题目列表(包括答案和解析)
| 2n+3 | 2 |
(1)求数列{bn}的通项公式;
(2)设有抛物线列C1,C2,…,Cn,…抛物线Cn(n∈N*)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),求点Dn且与抛物线Cn相切的直线斜率为kn,求极限
.
(3)设集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*}.若等差数列{Cn}的任一项Cn∈X∩Y,C1是X∩Y中的最大数,且-265<C10<-125.求{Cn}的通项公式.
若An和Bn分别表示数列{an}和{bn}前n项的和,对任意正整数n,an=-
,4Bn-12An=13n.
(1)求数列{bn}的通项公式;
(2)设有抛物线列C1,C2,…,Cn,…抛物线Cn(n∈N*)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),求点Dn且与抛物线Cn相切的直线斜率为kn,求极限
.
(3)设集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*}.若等差数列{Cn}的任一项Cn∈X∩Y,C1是X∩Y中的最大数,且-265<C10<-125.求{Cn}的通项公式.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com