题目列表(包括答案和解析)
已知
中,内角
的对边的边长分别为
,且![]()
(I)求角
的大小;
(II)若
求
的最小值.
【解析】第一问,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,![]()
第二问,![]()
三角函数的性质运用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,则当
,即
时,y的最小值为
.
D
解析:由正弦定理得![]()
.又由椭圆定义得AB+BC=2×5=10.AC=8. 所以![]()
![]()
D
解析:由正弦定理得![]()
.又由椭圆定义得AB+BC=2×5=10.AC=8. 所以![]()
![]()
已知函数
.]
(1)求函数
的最小值和最小正周期;
(2)设
的内角
、
、
的对边分别为
,
,
,且
,
,
若
,求
,
的值.
【解析】第一问利用![]()
得打周期和最值
第二问
,由正弦定理,得
,①
由余弦定理,得
,即
,②
由①②解得![]()
D
解析:由正弦定理得![]()
.又由椭圆定义得AB+BC=2×5=10.AC=8. 所以![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com