题目列表(包括答案和解析)
三棱柱
中,侧棱与底面垂直,
,
,
分别是
,
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求三棱锥![]()
的体积.
![]()
【解析】第一问利连结
,
,∵M,N是AB,
的中点∴MN//
.
又∵
平面
,∴MN//平面
.
----------4分
⑵中年∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,∴四边形
是正方形.∴
.∴
.连结
,
.
∴
,又N中
的中点,∴
.
∵
与
相交于点C,∴MN
平面
. --------------9分
⑶中由⑵知MN是三棱锥M-
的高.在直角
中,
,
∴MN=
.又
.
.得到结论。
⑴连结
,
,∵M,N是AB,
的中点∴MN//
.
又∵
平面
,∴MN//平面
.
--------4分
⑵∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,
∴四边形
是正方形.∴
.
∴
.连结
,
.
∴
,又N中
的中点,∴
.
∵
与
相交于点C,∴MN
平面
. --------------9分
⑶由⑵知MN是三棱锥M-
的高.在直角
中,
,
∴MN=
.又
.
![]()
已知正项数列
的前n项和
满足:
,
(1)求数列
的通项
和前n项和
;
(2)求数列
的前n项和
;
(3)证明:不等式
对任意的
,
都成立.
【解析】第一问中,由于
所以![]()
两式作差
,然后得到![]()
从而
得到结论
第二问中,
利用裂项求和的思想得到结论。
第三问中,![]()
![]()
又![]()
结合放缩法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正项数列
,∴
∴
又n=1时,![]()
∴
∴数列
是以1为首项,2为公差的等差数列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
对任意的
,
都成立.
| A、n=3 | B、n=4 | C、n=10 | D、n=9 |
| 34 |
| 55 |
| A、n<7 | B、n≤7 |
| C、n≤8 | D、n≤9 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com