题目列表(包括答案和解析)
| 1 | 2 |
![]()
图2
(1)求h与时间t的函数解析式,并作出这个函数的简图.
(2)讨论如果雨季河水上涨或旱季河流水量减少时,所求得的函数解析式中的参数将会发生哪些变化.若水车转速加快或减慢,函数解析式中的参数又会受到怎样的影响?
水车是一种利用水流的动力进行灌溉的工具,图1-6-5是一个水车的示意图,它的直径为3 m,其中心(即圆心)O距水面1.2 m.如果水车每4 min逆时针转3圈,在水车轮边缘上取一点P,我们知道在水车匀速转动时,P点距水面的高度h(m)是一个变量,显然,它是时间t(s)的函数.我们知道,h与t的函数关系反映了这个周期现象的规律.为了方便,不妨从P点位于水车与水面交点Q时开始记时(t=0).
首先,设法用解析式表示出这个函数关系,并用“五点法”作出这个函数在一个周期内的简图.
![]()
图1-6-5
其次,我们讨论如果雨季河水上涨或旱季河流水量减少时,所求得的函数解析式中的参数将发生哪些变化?若水车转速加快或减慢,函数解析式中的参数又会受到怎样的影响?
已知数列
是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列
的通项公式
和数列
的前n项和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
【解析】第一问利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
![]()
第二问,①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
第三问
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
.
(2)①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
综合①、②可得
的取值范围是
.
(3)
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2,
n=12时,数列
中的
成等比数列
已知函数f(x)(x∈R)满足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.
(1)求函数f(x)的表达式;
(2)若数列{an}满足a1=
,an+1=f(an),bn=
-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;
(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}为等比数列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)证明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com