题目列表(包括答案和解析)
已知数列{an}中,a1=1,以后各项由公式an=an-1+
(n≥2,n∈N+)给出,则a4=( )
(A)
(B)-
(C)
(D)-![]()
如图,已知圆锥体
的侧面积为
,底面半径
和
互相垂直,且
,
是母线
的中点.
![]()
(1)求圆锥体的体积;
(2)异面直线
与
所成角的大小(结果用反三角函数表示).
【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。
第一问中,由题意,
得
,故![]()
从而体积
.2中取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则
(或其补角)就是异面直线SO与PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
则
,所以异面直线SO与P成角的大arctan![]()
解:(1)由题意,
得
,
故
从而体积
.
(2)如图2,取OB中点H,联结PH,AH.
![]()
由P是SB的中点知PH//SO,则
(或其补角)就是异面直线SO与PA所成角.
由SO
平面OAB,
PH
平面OAB,PH
AH.
在
OAH中,由OA
OB得
;
在
中,
,PH=1/2SB=2,
,
则
,所以异面直线SO与P成角的大arctan![]()
|
|
设M1(0,0),M2(1,0),以M1为圆心,| M1 M2 | 为半径作圆交x轴于点M3 (不同于M2),记作⊙M1; 以M2为圆心,| M2 M3 | 为半径作圆交x轴于点M4 (不同于M3),记作⊙M2;……;以Mn为圆心,| Mn Mn+1 | 为半径作圆交x轴于点Mn+2 (不同于Mn+1),记作⊙Mn;……当n∈N*时,过原点作倾斜角为30°的直线与⊙Mn交于An,Bn.考察下列论断:
当n=1时,| A1B1 |=2;
当n=2时,| A2B2 |=
;
当n=3时,| A3B3 |=
;当n=4时,| A4B4
|=
;
……
由以上论断推测一个一般的结论:对于n∈N*,| AnBn |= ▲ .
下列推理是归纳推理的是( )
A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆
B.由a1=1,an=3n-1(n>1),求出S1,S2,S3,猜想数列的前n项和Sn的表达式
C.由圆x2+y2=r2的面积πr2,猜出椭圆
+
=1的面积S=πab
D.科学家利用鱼的沉浮原理制造潜艇
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com