因为Sk+1>Sk(k∈N*).所以Sk-2≥S1-2=1. 查看更多

 

题目列表(包括答案和解析)

(2003•海淀区一模)(1)一个等比数列{an}中,若存在ak<0,ak+1<0(k∈N),则对于任意n∈N,都有an<0;
(2)一个等差数列{an}中,若存在ak<0,ak+1<0(k∈N),则对于任意n∈N,都有an<0;
(3)一个等比数列{an}中,若存在自然数k,使ak•ak+1<0,则对于任意n∈N,都有an•an+1<0;
(4)一个等差数列{an}中,若存在ak+1>ak>0(k∈N),则对于任意n>k,都有an>0.
其中正确命题的序号是
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

(2013•松江区二模)如图所示,向量
BC
的模是向量
AB
的模的t倍,
AB
BC
的夹角为θ,那么我们称向量
AB
经过一次(t,θ)变换得到向量
BC
.在直角坐标平面内,设起始向量
OA1
=(4,0)
,向量
OA1
经过n-1次(
1
2
3
)
变换得到的向量为
An-1An
(n∈N*,n>1)
,其中AiAi+1Ai+2(i∈N*)为逆时针排列,记Ai坐标为(ai,bi)(i∈N*),则下列命题中不正确的是(  )

查看答案和解析>>

A,B,C,D四名同学在操 场上训练传球,球从A手中传出,记为第一次传球.设经过K次传球又传给A,不同的传球方法数为 ak经过K+1次传球又传给A,不同的传球方法数为 ak+1,运用归纳推理找出 ak+1与 ak(k∈N+且K≥2)的关系是
ak+1=3k-ak
ak+1=3k-ak

查看答案和解析>>

设函数f(x)=x2-2(-1)klnx(k∈N*).f′(x)是f(x)的导函数.
(1)当k为偶数时,正项数列{an}满足:a1=1,anf′(an)=
a
2
n+1
-3
.证明:数列{
a
2
n
}
中任意不同三项不能构成等差数列;
(2)当k为奇数时,证明:当x>0时,对任意正整数n都有[f′(x)]n-2n-1f′(x)≥2n(2n-2)成立.

查看答案和解析>>

(2012•成都一模)已知等差数列{an}中,公差d>0,a2=9,且a1a3=65.数列前n项和Sn满足2Sn=3n+1-3(n∈Nn
(I)求数列{an}和{bn}的通项公式;
(II)设cn=anbn,求数列{cn)的前n项和Tn
(III)设dn=bn+(-1)n-1(2n+1+2)λ(n∈N*),若d2k+1>d2k对k∈N*恒成立,求λ的取值范围.

查看答案和解析>>


同步练习册答案