题目列表(包括答案和解析)
(本小题满分13分)已知数列{an}的前n项和为Sn,满足关系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)
(1)当a1为何值时,数列{an}是等比数列;
(2)在(1)的条件下,设数列{an}的公比为f(t),作数列{bn}使b1=1,bn=f(bn-1)(n=2,
3,4,…),求bn;
(3)在(2)条件下,如果对一切n∈N+,不等式bn+bn+1<恒成立,求实数c的取值范围.
(本小题满分13分)已知数列{an}的前n项和为Sn,满足关系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)
(1)当a1为何值时,数列{an}是等比数列;
(2)在(1)的条件下,设数列{an}的公比为f(t),作数列{bn}使b1=1,bn=f(bn-1)(n=2,
3,4,…),求bn;
(3)在(2)条件下,如果对一切n∈N+,不等式bn+bn+1<恒成立,求实数c的取值范围.
(文)(本大题满分12分)
掷一枚硬币,正、反两面出现的概率都是0.5,把这枚硬币反复掷8次,这8次中的第n次中,假若正面出现,记an=1,若反面出现,记an=-1,令Sn=a1+a2+…+an(1≤n≤8),在这种情况下,试求下面的概率:
(1)S2≠0且S8=2的概率;
(2)S4=0且S8=2的概率.
(Ⅰ)写出xn与x n-1、x n-2之间的关系式(n≥3);
(Ⅱ)设an=x n+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明;
(Ⅲ)求
xn.
(Ⅰ)写出xn与x n-1、x n-2之间的关系式(n≥3);
(Ⅱ)设an=x n+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明;
(Ⅲ)求
xn.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com