求函数y=+sin2x的最小值. 查看更多

 

题目列表(包括答案和解析)

已知某海滨浴场的海浪高度y(m)是时间t(0≤t≤24,单位:h)的函数,记作y=f(t),下表是某日各时的浪高数据:
t/时 0 3 6 9 12 15 18 21 24
y/米 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)求函数y=Acosωt+b的最小正周期T,振幅A及函数表达式.
(2)依据规定:当海浪高度高于1m时才对冲浪爱好者开放,请依据(1)的结论,一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动.

查看答案和解析>>

某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),下面是某日水深的数据:
t(小时) 0 3 6 9 12 15 18 21 24
y(米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
经长期观察:y=f(t)的曲线可近似看成函数y=Asinωt+b的图象(A>0,ω>0).
(1)求函数y=f(t)的近似表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?

查看答案和解析>>

某同学用“五点法”画函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<
π
2
)
在某一个周期内的图象时,列表并填入的部分数据如下表:
x
 
3
 
3
 
ωx+φ 0
π
2
π
2
Asin(ωx+φ) 0 2 0 -2
 
(1)请将上表数据补全,并直接写出函数f(x)的解析式;
(2)将函数f(x)图象上各点的纵坐标不变,横坐标缩短到原来的
1
2
,得到函数y=g(x)的图象,求函数y=g(x)的单调减区间.

查看答案和解析>>

海南清水湾天然浴场,景色秀丽,海湾内水清浪小,滩平坡缓,砂质细软,自然条件极为优越,是冲浪爱好者的好去处.已知海湾内海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记y=f(t).下表是某日各时刻记录的浪高数据:
t 0 3 6 9 12 15 18 21 24
y 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求函数y=Acosωt+b的最小正周期T,振幅A及函数解析式;
(2)依据规定,当海浪高度不低于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪爱好者进行运动?

查看答案和解析>>

(福建卷文21)已知函数的图象过点(-1,-6),且函数的图象关于y轴对称.

(Ⅰ)求mn的值及函数y=f(x)的单调区间;

(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.

查看答案和解析>>


同步练习册答案