.评述:本题重点考查两角差的三角公式.积化和差公式.半角公式等多个知识点. 查看更多

 

题目列表(包括答案和解析)

1、证明两角差的余弦公式

    2、由推导两角和的余弦公式.

3、已知△ABC的面积,且,求.

【解析】本试题主要是考查了利用三角函数总两角和差的三角关系式证明。并能,结合向量的知识进行求解三角形问题的综合运用。

 

查看答案和解析>>

(1)利用向量有关知识与方法证明两角差的余弦公式:Cα-β:cos(α-β)=cosαcosβ+sinαsinβ;
(2)由Cα-β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.

查看答案和解析>>

(1)如图,已知α、β是坐标平面内的任意两个角,且0≤α-β≤π,证明两角差的余弦公式:cos(α-β)=cosαcosβ+sinαsinβ;
(2)已知α∈(0,
π
2
),β∈(
π
2
,π)
,且cosβ=-
1
3
sin(α+β)=
7
9
,求2cos2α+cos2α的值.

查看答案和解析>>

叙述两角差的余弦公式,并用向量的数量积证明.

查看答案和解析>>

已知tan110°=a,求tan50°时,同学甲利用两角差的正切公式求得:tan50°=
a-
3
1+
3
a
;同学乙利用二倍角公式及诱导公式得tan50°=
1-a2
2a
;根据上述信息可估算a的范围是(  )
A、-∞,-2-
3
B、-2-
3
,-3
C、(-3,-2)
D、(-2,-
3
)

查看答案和解析>>


同步练习册答案