解关于x的不等式<0(a∈R). 查看更多

 

题目列表(包括答案和解析)

(08年调研一文)(13分)解关于x的不等式R).

查看答案和解析>>

(2012•静安区一模)已知函数f(x)=-x2+4|x|+5.
(1)画出函数y=f(x)在闭区间[-5,5]上的大致图象;
(2)解关于x的不等式f(x)<7;
(3)当4-2
2
<k<4+2
2
时,证明:f(x)<kx+4k+7对x∈R恒成立.

查看答案和解析>>

已知m,n∈R,f(x)=x2-mnx.
(1)当n=1时,
①解关于x的不等式f(x)>2m2
②若关于x的不等式f(x)+4>0在x∈[1,3]上有解,求m的取值范围;
(2)若m>0,n>0,且m+n=1,证明不等式f(
1
m
)+f(
1
n
)≥7

查看答案和解析>>

已知函数f(x)=
|x+7|+|x-1|-m
的定义域为R.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-12.

查看答案和解析>>

定义在R上的函数f(x)满足:对于任意实数a,b总有f(a+b)=f(a)•f(b),当x>0时,0<f(x)<1,且f(1)=
1
2

(Ⅰ)用定义法证明:函数f(x)在(-∞,+∞)上为减函数;
(Ⅱ)解关于x的不等式f(kx2-5kx+6k)•f(-x2+6x-7)>
1
4
(k∈R);
(Ⅲ)若x∈[-1,1],求证:
8k+27k+1
3
6k•f(x)
2
(k∈R).

查看答案和解析>>


同步练习册答案