因此.当△ABC为钝角三角形时.点C的纵坐标y的取值范围是y<-或y>(y≠2).评述:该题全面综合了解析几何.平面几何.代数的相关知识.充分体现了“注重学科知识的内在联系 .题目的设计新颖脱俗.能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用.以及分类讨论的思想.方程的思想.该题对思维的目的性.逻辑性.周密性.灵活性都进行了不同程度的考查.对运算.化简能力要求也较高.有较好的区分度. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-
3
的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>

已知动圆过定点P(1,0),且与定直线L:x=-1相切,点C在l上.

(1)求动圆圆心的轨迹M的方程;

(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由

(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>


同步练习册答案