如图8―8.给出定点A(a.0)(a>0)和直线l:x=-1.B是直线l上的动点.∠BOA的角平分线交AB于点C.求点C的轨迹方程.并讨论方程表示的曲线类型与a值的关系.注:文科题设还有条件a≠1 查看更多

 

题目列表(包括答案和解析)

10、定义域和值域均为[-a,a](常数a>0)的函数y=f(x)和y=g(x)的图象如图所示,给出下列四个命题:
(1)方程f[g(x)]=0有且仅有三个解;
(2)方程g[f(x)]=0有且仅有三个解;
(3)方程f[f(x)]=0有且仅有九个解;
(4)方程g[g(x)]=0有且仅有一个解.
那么,其中正确命题的个数是(  )

查看答案和解析>>

如果函数y=f(x)的导函数的图象如图所示,给出下列判断:精英家教网
①函数y=f(x)在区间(-3,-
1
2
)内单调递增;
②函数y=f(x)在区间(-
1
2
,3)内单调递减;
③函数y=f(x)在区间(4,5)内单调递增;
④当x=2时,函数y=f(x)有极小值;
⑤当x=-
1
2
时,函数y=f(x)有极大值.
则上述判断中正确的是
 

查看答案和解析>>

某池塘中原有一块浮草,浮草蔓延后的面积y(m2)与时间t(月)之间的函数关系是y=at-1(a>0,且a≠1),它的图象如图所示.给出以下命题:
①池塘中原有浮草的面积是0.5m2
②到第7个月浮草的面积一定能超过60m2
③浮草每月增加的面积都相等;
④若浮草面积达到4m2,16m2,64m2所经过时间分别为t1,t2,t3,则t1+t2<t3,其中所有正确命题的序号是(  )

查看答案和解析>>

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,给出关于f(x)的下列命题:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函数y=f(x)在x=2取到极小值;
②函数f(x)在[0,1]是减函数,在[1,2]是增函数;
③当1<a<2时,函数y=f(x)-a有4个零点;
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最小值为0.
其中所有正确命题是
①③④
①③④
(写出正确命题的序号).

查看答案和解析>>

已知定义在[-2,2]上的函数y=f(x)和y=g(x),其图象如图所示:给出下列四个命题:
①方程f[g(x)]=0有且仅有6个根    ②方程g[f(x)]=0有且仅有3个根
③方程f[f(x)]=0有且仅有5个根    ④方程g[g(x)]=0有且仅有4个根
其中正确命题的序号(  )

查看答案和解析>>


同步练习册答案