因此=1.即为所求的轨迹方程. 查看更多

 

题目列表(包括答案和解析)

已知函数

(1)求函数的最小正周期和最大值;

(2)求函数的增区间;

(3)函数的图象可以由函数的图象经过怎样的变换得到?

【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用可知函数的周期为,最大值为

第二问中,函数的单调区间与函数的单调区间相同。故当,解得x的范围即为所求的区间。

第三问中,利用图像将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

解:(1)函数的最小正周期为,最大值为

(2)函数的单调区间与函数的单调区间相同。

 

所求的增区间为

所求的减区间为

(3)将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

 

查看答案和解析>>

精英家教网已知点C为圆(x+1)2+y2=8的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径CP上,且
MQ
AP
=0,
AP
=2
AM

(1)当点P在圆上运动时,求点Q的轨迹方程;
(2)设过点(0,2)且斜率为2的直线l与(1)中所求的曲线交于B,D两点,O为坐标原点,求△BDO的面积.

查看答案和解析>>

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x
10+x
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.

查看答案和解析>>

已知点C为圆(x+1)2+y2=8的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径CP上,且
(1)当点P在圆上运动时,求点Q的轨迹方程;
(2)设过点(0,2)且斜率为2的直线l与(1)中所求的曲线交于B,D两点,O为坐标原点,求△BDO的面积.

查看答案和解析>>

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=数学公式x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|数学公式>2x+a-5},若A∩B≠Φ,求实数a的取值范围.

查看答案和解析>>


同步练习册答案