所以m=y0-4k=y0-y0=-y0. 查看更多

 

题目列表(包括答案和解析)

已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,为数列的前n项和.

(1)求数列的通项公式和数列的前n项和

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.

【解析】第一问利用在中,令n=1,n=2,

   即      

解得,, [

时,满足

第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

第三问

     若成等比数列,则

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

时,满足

(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

综合①、②可得的取值范围是

(3)

     若成等比数列,则

即.

,可得,即

,且m>1,所以m=2,此时n=12.

因此,当且仅当m=2, n=12时,数列中的成等比数列

 

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.

(1)求f(x)的单调区间;

(2)讨论f(x)的极值.

所以f(-1)=2是极大值,f(1)=-2是极小值.

(2)曲线方程为y=x3-3x,点A(0,16)不在曲线上.

设切点为M(x0,y0),则点M的坐标满足y0=x03-3x0.

因f′(x0)=3(x02-1),故切线的方程为y-y0=3(x02-1)(x-x0).

注意到点A(0,16)在切线上,有16-(x03-3x0)=3(x02-1)(0-x0),

化简得x03=-8,解得x0=-2.

所以切点为M(-2,-2),

切线方程为9x-y+16=0.

查看答案和解析>>

点M(x0,y0)是⊙C:(x-a)2+(y-b)2=r2(r>0)内且不为圆心的一点,则曲线(x0-a)(x-a)+(y0-b)(y-b)=r2与⊙C的位置关系是(  )
A、相离B、相交C、相切D、内含

查看答案和解析>>


同步练习册答案