题目列表(包括答案和解析)
如图,在直角坐标系xOy中有一直角梯形ABCD,AB的中点为O,AD⊥AB,AD∥BC,AB=4,BC=3,AD=1,以A,B为焦点的椭圆经
过点C.
(1)求椭圆的标准方程;
(2)若点E(0,1),问是否存在直线l与椭圆交于M,N两点且|ME|=|NE|,若存在,求出直线l斜率的取值范围;若不存在,请说明理由.
已知f(xn)=lnx,则f(2)的值为( )
A.ln2 B.
ln2
C.
ln2 D.2ln2
(本小题满分13分)
设定义在R上的函数f(x)=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4∈R)当x=-1时,f(x)取得极大值,且函数y=f(x+1)的图象关于点(-1,0)对称.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)试在函数y=f(x)的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间[-,]上;
(Ⅲ)设xn=,ym=(m,n∈N?),求证:|f(xn)-f(ym)|<.
已知
(n=1,2,…
),试证:“
数列{xn}对任意的正整数n,都满足xn>xn+1,”当此题用反证法否定结论时应为( )
A.对任意的正整数n,有xn=xn+1B.存在正整数n,使xn≤xn+1
C.存在正整数n,使
1D.存在正整数n,使![]()
(本题满分12分)
已知函数f(x)=,数列{xn}的通项由xn=f(xn-1)(n≥2,且n∈N*)确定.
(1)求证:{}是等差数列;
(2)当x1=时,求x100.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com