整理得(k12-1)x2+2k12x+2k12-1=0 ②若k12-1=0.则方程组①只有一个解.即l1与双曲线只有一个交点与题设矛盾.故k12-1≠0即k12≠1 查看更多

 

题目列表(包括答案和解析)

11.已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为:______________.

查看答案和解析>>

11.已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为:                                      .

查看答案和解析>>

有下列命题中假命题的序号是
①④
①④

①x=0是函数y=x3的极值点;
②三次函数f(x)=ax3+bx2+cx+d有极值点的充要条件是b2-3ac>0;
③奇函数f(x)=mx3+(m-1)x2+48(m-2)x+n在区间(-4,4)上单调递减.
④若双曲线的渐近线方程为y=±
3
x
,则其离心率为2.

查看答案和解析>>

计算下列定积分.
(1)
3
-1
(4x-x2)dx
;(2)
π
2
-
π
2
cos2xdx

查看答案和解析>>

定义:F(x,y)=yx(x>0,y>0)
(1)解关于x的不等式F(1,x2)+F(2,x)≤3x-1;
(2)记f(x)=3•F(1,x),设Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n
n
)
,若不等式
an
Sn
an+1
Sn+1
对n∈N*恒成立,求实数a的取值范围;
(3)记g(x)=F(x,2),正项数列an满足:a1=3,g(an+1)=8an,求数列an的通项公式,并求所有可能的乘积ai•aj(1≤i≤j≤n)的和.

查看答案和解析>>


同步练习册答案