已知直线l⊥平面α.直线m平面β.有下面四个命题: 查看更多

 

题目列表(包括答案和解析)

(09年长沙一中第八次月考理)(13分)已知直线L:x-y-3=0,抛物线C的顶点在原点,焦点在轴正半轴上,S是抛物线C上任意一点,T是直线L上任意一点,若|ST|的最小值为d>0时,点S的横坐标为2.

(1)求抛物线方程以及d的值;

(2)过抛物线C的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点.设点分有向线段所成的比为

证明:

(3)设R为抛物线准线上任意一点,过R作抛物线的两条切线,切点分别为M,N,直线MN是否恒过一定点?若恒过定点,请指出定点;若不恒过定点,请说明理由。

查看答案和解析>>

(本小题满分10分)已知直线l被两平行线l1:x+y-5=0和直线l2:x+y-3=0所截得的线段长为2,且直线l过(5,2)点,求直线l的方程。

 

查看答案和解析>>

(10分)已知直线lkxy+1+2k=0.

(1)求证:直线l恒过某个定点;

(2)若直线lx轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;

 

查看答案和解析>>

(2012•枣庄二模)已知直线l⊥平面α,直线m?平面β,给出下列四个命题:
①α∥β⇒l⊥m
②α⊥β⇒l∥m;
③l∥m⇒α⊥β;
④l⊥m⇒α∥β.
其中正确的命题有(  )个.

查看答案和解析>>

已知直线l⊥平面α,m为与直线l不重合的直线.下列判断:
①若m⊥l,则m∥α;
②若m⊥α,则m∥l;
③若m∥α,则m⊥l.
其中正确的序号是
②③
②③

查看答案和解析>>


同步练习册答案