在Rt△SAC中.由AC=2.SC=4.得cosSCA=.∴∠SCA=60°.即侧面SBC与底面ABC所成二面角的大小为60°. 查看更多

 

题目列表(包括答案和解析)

小明和同桌小聪一起合作探索:如图,一架5米长的梯子AB斜靠在铅直的墙壁AC上,这时梯子的底端B到墙角C的距离为1.4米.如果梯子的顶端A沿墙壁下滑0.8米,那么底端B将向左移动多少米?

(1)小明的思路如下,请你将小明的解答补充完整:

解:设点B将向左移动x米,即BE=x,则:

EC= x+1.4,DC=ACDC=-0.8=4,

DE=5,在Rt△DEC中,由EC2+DC2=DE2

得方程为:     , 解方程得:    

∴点B将向左移动    米.

(2)解题回顾时,小聪提出了如下两个问题:

①将原题中的“下滑0.8米”改为“下滑1.8米”,那么答案会是1.8米吗?为什么?

②梯子顶端下滑的距离与梯子底端向左移动的距离能相等吗?为什么?

请你解答小聪提出的这两个问题.

 

查看答案和解析>>

在Rt△ABC中,AB=AC=1,若一个椭圆通过A、B两点,它的一个焦点为C,另一个焦点F在AB上,则这个椭圆的离心率为(  )

查看答案和解析>>

精英家教网在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4
2

(Ⅰ)求二面角A-BC-S的大小;
(Ⅱ)求直线AB与平面SBC所成角的大小.(用反三角函数表示)

查看答案和解析>>

如图,正五边形ABCDE的边长为2,甲同学在△ABC中用余弦定理解得AC=
8-8cos108°
,乙同学在Rt△ACH中解得AC=
1
cos72°
,据此可得cos72°的值所在区间为(  )

查看答案和解析>>

在Rt△ABC中,AB=AC=1,若一个椭圆通过A、B两点,它的一个焦点为C,另一个焦点F在AB上,则这个椭圆的离心率为(  )
A.
6
-
3
B.
2
-1
C.
6
-
3
2
D.
3
-
6
2

查看答案和解析>>


同步练习册答案