(Ⅲ)解法一:如图9―80.连结D1B1. 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

(12分)(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD

(1)问BC边上是否存在Q点,使,说明理由.

(2)问当Q点惟一,且cos<>=时,求点P的位置.

 

 

 

查看答案和解析>>

(08年银川一中一模) (10分) 如图所示,已知⊙O1与⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1,⊙O2于点D,E,DE与AC相交于点P.

   (1)求证:AD∥EC;

   (2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长;

 

 

查看答案和解析>>

长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图9所示,一艘船从长江南岸A点出发,以5km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h.

(1)试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字);

(2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,精确到度).

    

图9                    

查看答案和解析>>

如图9-4,在直四棱柱A1B1C1D1-ABCD中,当底面四边形ABCD满足条件                             时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).

查看答案和解析>>


同步练习册答案