特例:圆心在坐标原点.半径为的圆的方程是:. 查看更多

 

题目列表(包括答案和解析)

((本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ)求椭圆及其“伴随圆”的方程

(Ⅱ)试探究y轴上是否存在点(0, ),使得过点作直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.若存在,请求出的值;若不存在,请说明理由。

 

查看答案和解析>>

(本小题满分13分)

给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 若椭圆C的一个焦点为,其短轴上的一个端点到距离为

(Ⅰ)求椭圆及其“伴随圆”的方程;

(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;

(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.

 

 

查看答案和解析>>

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ)求椭圆及其“伴随圆”的方程;

(Ⅱ)过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

 

查看答案和解析>>

(本小题满分13分)
给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 若椭圆C的一个焦点为,其短轴上的一个端点到距离为
(Ⅰ)求椭圆及其“伴随圆”的方程;
(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;
(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.

查看答案和解析>>

(本题满分10分)

已知椭圆的方程为,称圆心在坐标原点,半径为的圆为椭圆的“伴随圆”,椭圆的短轴长为2,离心率为

    (Ⅰ)求椭圆及其“伴随圆”的方程;

(Ⅱ)若直线与椭圆交于两点,与其“伴随圆”交于两点,当 时,求△面积的最大值.

 

查看答案和解析>>


同步练习册答案