-③.所以BC的方程即③代②.①②相切即为所求. 查看更多

 

题目列表(包括答案和解析)

已知直线l:x-y+3=0,一束光线从点A(1,2)处射向x轴上一点B,又从B点反射到l上一点C,最后又从C点反射回A点.
(Ⅰ)试判断由此得到的△ABC是有限个还是无限个?
(Ⅱ)依你的判断,认为是无限个时求出所以这样的△ABC的面积中的最小值;认为是有限个时求出这样的线段BC的方程.

查看答案和解析>>

为常数,离心率为的双曲线上的动点到两焦点的距离之和的最小值为,抛物线的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线为负常数)上任意一点向抛物线引两条切线,切点分别为,坐标原点恒在以为直径的圆内,求实数的取值范围。

【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

第二问中,

故直线的方程为,即

所以,同理可得:

借助于根与系数的关系得到即是方程的两个不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

(Ⅱ)设

故直线的方程为,即

所以,同理可得:

是方程的两个不同的根,所以

由已知易得,即

 

查看答案和解析>>

已知两点分别为B(2,1),C(-2,3).
(1)求直线BC的方程;
(2)求线段BC的垂直平分线的方程.

查看答案和解析>>

已知:矩形AEFD的两条对角线相交于点M(2,0),AE边所在直线的方程为:x-3y-6=0,点T(-1,1)在AD边所在直线上.
(1)求矩形AEFD外接圆P的方程.
(2)△ABC是⊙P的内接三角形,其重心G的坐标是(1,1),求直线BC的方程.

查看答案和解析>>

经过点A(-3,-
32
)
,倾斜角为α的直线与圆x2+y2=25相交于BC两点
(1)求弦BC的长
(2)当A恰为BC的中点时,求直线BC的方程
(3)当|BC|=8时,求直线BC的方程.

查看答案和解析>>


同步练习册答案