若直线L不垂直于x轴.可设直线L: 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+
6
=0
相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求
OA
OB
的取值范围;
(3)若B点在于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

椭圆C中心是坐标原点O,焦点在x轴上,离心率e=
2
2
,过椭圆的右焦点且垂直于长轴的弦长为
2

(I)求椭圆C的标准方程;
(II)已知直线l(l不垂直于x轴)交椭圆C于P、Q两点,若
OP
OQ
=0
,求证:点O到直线l的距离是
6
3

查看答案和解析>>

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左顶点为A,右焦点为F,过点F作垂直于x轴的直线与双曲线交于B、C两点,且AB⊥AC,|BC|=6.
(1)求双曲线的方程;
(2)设过点F且不垂直于x轴的直线l与双曲线分别交于点P、Q,请问:是否存在直线l,使△APQ构成以A为直角顶点的等腰直角三角形?若存在,求出所有满足条件的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

精英家教网已知不垂直于x轴的动直线l交抛物线y2=2mx(m>0)于A、B两点,若A、B两点满足∠AQP=∠BQP,其中Q(-4,0),原点O为PQ的中点.
①求证:A、P、B三点共线;
②当m=2时,是否存在垂直于x轴的直线l′,使得l′被以AP为直径的圆所截得的弦长为定值,如果存在,求出l′的方程,如果不存在,请说明理由.

查看答案和解析>>

已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.
(1)求动圆圆心的轨迹C的方程;
(2)若轨迹C与圆M:(x-5)2+y2=r2(r>0)相交于A、B、C、D四个点,求r的取值范围;
(3)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.

查看答案和解析>>


同步练习册答案