同理∴四边形面积为5⑵四边形面积均为5 查看更多

 

题目列表(包括答案和解析)

如图,四边形ABCD中,AB=BC=3厘米,DA=DC=4厘米,∠DAB=∠DCB=90°,点P从A点开始沿射线AB方向运动,点Q从C点开始沿射线BC方向运动,P、Q两点运动速度均为1厘米/秒,两点同时运动.
(1)在P、Q两点运动过程中,请问∠PDQ的大小是否发生变化?请参照图1说明理由.
(2)当点P在线段AB上运动时(如图1),请求出四边PDQB的面积S四边形PDQB
(3)如图2,P点运动到AB延长线上,设DP与线段BC的交点为E
①当P、Q运动了4秒时,求S△CDE-S△BPE的值;
③P、Q运动了多少秒时△CDE=S△BPE

查看答案和解析>>

如图,四边形OABC为直角梯形,OA=4,BC=3,OC=4. 点M从O 出发向A运动;点N从B同时出发,向C运动,速度均为每秒1个单位长度.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ、OQ,设运动时间为t秒.
(1)用含t的代数式表示PQ的长.
(2)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由.
(3)设E、F分别是OQ、PQ的中点,求整个运动过程中,线段EF所扫过的面积.

查看答案和解析>>

理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.
(1)如图1:当点M与B重合时,S△DCM=______;
(2)如图2,当点M与B与A均不重合时,S△DCM=______;
(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=______;

拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.

实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.

查看答案和解析>>

理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.
(1)如图1:当点M与B重合时,S△DCM=______;
(2)如图2,当点M与B与A均不重合时,S△DCM=______;
(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=______;

拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.

实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.

查看答案和解析>>

理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.
(1)如图1:当点M与B重合时,S△DCM=______;
(2)如图2,当点M与B与A均不重合时,S△DCM=______;
(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=______;

拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.

实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.

查看答案和解析>>


同步练习册答案