22.(1)证明:分别过点C.D.作CG⊥AB.DH⊥AB.垂足为G.H.则∠CGA=∠DHB=90°.--1分 ∴ CG∥DH. ∵ △ABC与△ABD的面积相等. ∴ CG=DH. ----------2分 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)已知AB是⊙O的一条弦,CD是⊙O的直径,CDAB,垂足为K.现取一块三角板,把它的一个锐角顶点固定在点C处,该锐角的两边(从左到右)与直线AB和圆分别相交于EFGH

1.(1) 若∠C的一边过圆心,请选择图10-1或图10-2所示,求证: △CEF∽△CHG

2.(2) 若∠C的边不过圆心,在图10-3中补全一种示意图,请你观察所画的图形,并判断(1)中的结论是否仍然成立?若成立,给予证明;若不成立,请说明理由.

 

查看答案和解析>>

(本题满分12分)已知AB是⊙O的一条弦,CD是⊙O的直径,CDAB,垂足为K.现取一块三角板,把它的一个锐角顶点固定在点C处,该锐角的两边(从左到右)与直线AB和圆分别相交于EFGH

1.(1) 若∠C的一边过圆心,请选择图10-1或图10-2所示,求证: △CEF∽△CHG

2.(2) 若∠C的边不过圆心,在图10-3中补全一种示意图,请你观察所画的图形,并判断(1)中的结论是否仍然成立?若成立,给予证明;若不成立,请说明理由.

 

查看答案和解析>>

(本题满分10分)

情境观察

将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是  ▲   ,∠CAC′=  ▲   °.

 

 

 

 

 

 


问题探究

如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分

别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等

腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为

P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.

 

拓展延伸

如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.

 

查看答案和解析>>

(本题满分10分)

情境观察

将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是   ▲   ,∠CAC′=   ▲   °.

 

 

 

 

 

 


问题探究

如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分

别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等

腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为

P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.

 

拓展延伸

如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.

 

查看答案和解析>>

(本题满分10分)如图所示,过点F(0,1)的直线ykxb与抛物线yx2交于Mx1y1)和Nx2y2)两点(其中x1<0,x2<0).

(1)求b的值.

(2)求x1x2的值

(3)分别过MN作直线ly=-1的垂线,垂足分别是M1N1,判断△M1FN1的形状,并证明你的结论.

(4) 对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案