注意事项:1.第Ⅱ卷共6页.用蓝.黑钢笔或圆珠笔直接答在考试卷上. 查看更多

 

题目列表(包括答案和解析)

为配合社区开展的“尊老爱老”活动,社区医院准备印刷一批关于老年人健康的小册子,为了方便阅读决定将原来用五号字(号数越大,字越小)排版改为用四号字排版.用五号字排版,32开本,每面为26行×26字,共105页,用四号字排版共169页,则同样开本每页排列格式可能为(  )
A、20行×20字B、22行×19字C、21行×19字D、22行×20字

查看答案和解析>>

你能估算一粒小米的重量吗?

①用小碗盛一碗米,放入较大的容器中,再放入100颗绿豆,搅拌均匀.

②从中取出一小部分,数一数其中绿豆多少颗,小米多少颗.

③算出绿豆所占的百分比P.

④若小米总颗数为x,则=P,可求出x=.

⑤取一合适筛子将小米全部筛出.

⑥称出小米总重量G.

⑦每粒小米重量约为.

(1)试用所学知识解释这种方法,估计一粒小米重量的合理性.

(2)说说这一实验的注意事项.

(3)将以上操作做怎样调整,便可不用作第⑤步了.

 

查看答案和解析>>

在平面直角坐标系中,将抛物线向上(下)或向左(右)平移了个单位,使平移后的抛物线恰好经过原点,则的最小值为(      )

A.1              B.2            C.3            D.6

第Ⅱ卷(非选择题   共90分)

查看答案和解析>>

把代数式化成不含负指数的形式是(   )

A、       B、     C、      D、

第Ⅱ卷(非选择题  共54分)

 

查看答案和解析>>

在平面直角坐标系中,将抛物线向上(下)或向左(右)平移了个单位,使平移后的抛物线恰好经过原点,则的最小值为(      )

A.1              B.2            C.3            D.6

第Ⅱ卷(非选择题   共90分)

查看答案和解析>>

一、选择题

1.A 2.B 3.C 4.B 5.B 6.C 7.C 8.A 9.B 10.D 11.B 12.C

二、填空题

13.9  14.  15. BD=CD,OE=OF,DE∥AC等  16.4  17.15

三、解答题

18.

(1)解:   ................................................ 1分

   ...................................................... 2分

  ....................................................... 3分

(2)解:解①得>-2  ................................................ 4分

解②得<3  .................................................. 5分

∴此不等式组的解集是-2<x<3    ................................... 6分

解集在数轴上表示正确  .............................................. 7分

19.

(1)证明:∵AB∥DE,∴∠B=∠DEF

∵AC∥DF,∴∠F=∠ACB  ............................................ 1分

∵BE=CF,∴BE+EC= CF + EC即BC=EF   ............................... 2分

∴△ABC≌△DEF

∴AB=DE............................. 3分

(2)解:过点O作OG⊥AP于点G

连接OF  ........................... 4分

∵ DB=10,∴ OD=5

∴ AO=AD+OD=3+5=8

∵∠PAC=30°

∴ OG=AO=cm............... 5分

∵ OG⊥EF,∴ EG=GF

∵ GF= 

∴ EF=6cm  ......................... 7分

20.解:组成的所有坐标列树状图为:

 

.................... 5分

或列表为:

.................... 5分

方法一:根据已知的数据,点不在第二象限的概率为

方法二:1-  ................................................. 8分

21.解:设康乃馨每支元,水仙花每支元   ............................. 1分

由题意得:    ......................................... 4分

解得:  ..................................................... 6分

第三束花的价格为  ................................ 7分

答:第三束花的价格是17元.   ...................................... 8分

22.解:(1)设CD为千米,

由题意得,∠CBD=30°,∠CAD=45°

∴AD=CD=x  .................... 1分

在Rt△BCD中,tan30°=

∴ BD=  ................... 2分

AD+DB=AB=40

  ............... 3分

解得 ≈14.7

∴ 牧民区到公路的最短距离CD为14.7千米.  ......................... 4分

(若用分母有理化得到CD=14.6千米,可得4分)

(2)设汽车在草地上行驶的速度为,则在公路上行驶的速度为3

在Rt△ADC中,∠CAD=45°,∴ AC=CD

方案I用的时间........................ 5分

方案II用的时间..................................... 6分

= .................................................... 7分

>0

>0  ...................................................... 8分

∴方案I用的时间少,方案I比较合理  ............................... 9分

23.解:(1)  .......................................... 1分

解得:   .................................................. 2分

∴点P的坐标为(2,)  ........................................... 3分

(2)将代入

,即OA=4................................................... 4分

做PD⊥OA于D,则OD=2,PD=2

∵ tan∠POA=

∴ ∠POA=60°   ................................................... 5分

∵ OP=

∴△POA是等边三角形.  ............ 6分

 

(3)① 当0<t≤4时,如图1

在Rt△EOF中,∵∠EOF=60°,OE=t

∴EF=t,OF=t

∴S=?OF?EF=.............. 7分

当4<t<8时,如图2

设EB与OP相交于点C

易知:CE=PE=t-4,AE=8-t

∴AF=4-,EF=(8-t)  

∴OF=OA-AF=4-(4-t)=t

∴S=(CE+OF)?EF

=(t-4+t)×(8-t)

=-+4t-8................ 8分

② 当0<t≤4时,S=, t=4时,S最大=2

当4<t<8时,S=-+4t-8=-(t-)+ 

t=时,S最大=

>2,∴当t=时,S最大=........................... 9分

24.解:(1)设抛物线的解析式为  ......................... 1分

将A(-1,0)代入:       ∴   .................... 2分

∴ 抛物线的解析式为,即:.............. 3分

(2)是定值,  ........................................... 4分

∵ AB为直径,∴ ∠AEB=90°,∵ PM⊥AE,∴ PM∥BE

∴ △APM∽△ABE,∴  ①

同理:   ②  .............................................. 5分

① + ②: .................................... 6分

(3)∵ 直线EC为抛物线对称轴,∴ EC垂直平分AB

∴ EA=EB

∵ ∠AEB=90°

∴ △AEB为等腰直角三角形.

∴ ∠EAB=∠EBA=45° ........... 7分

如图,过点P作PH⊥BE于H,

由已知及作法可知,四边形PHEM是矩形,

∴PH=ME且PH∥ME

在△APM和△PBH中

∵∠AMP=∠PHB=90°, ∠EAB=∠BPH=45°

∴ PH=BH

且△APM∽△PBH

 ①.......... 8分

在△MEP和△EGF中,

∵ PE⊥FG,  ∴ ∠FGE+∠SEG=90°

∵∠MEP+∠SEG=90°  ∴ ∠FGE=∠MEP

∵ ∠PME=∠FEG=90° ∴△MEP∽△EGF

    ②

由①、②知:.............................................. 9分

(本题若按分类证明,只要合理,可给满分)

 

 

 

 

 


同步练习册答案