即,而,有意义, 查看更多

 

题目列表(包括答案和解析)

内的导数有意义,则内单调递减的(     )

充分而不必要条件                   必要而不充分条件   

充要条件                           即不充分也不必要条件

 

查看答案和解析>>

内的导数有意义,则内单调递减的(     )

充分而不必要条件                   必要而不充分条件   

充要条件                           即不充分也不必要条件

 

查看答案和解析>>

若函数在定义域内存在区间,满足上的值域为,则称这样的函数为“优美函数”.

(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;

(Ⅱ)若函数为“优美函数”,求实数的取值范围.

【解析】第一问中,利用定义,判定由题意得,由,所以

第二问中, 由题意得方程有两实根

所以关于m的方程有两实根,

即函数与函数的图像在上有两个不同交点,从而得到t的范围。

解(I)由题意得,由,所以     (6分)

(II)由题意得方程有两实根

所以关于m的方程有两实根,

即函数与函数的图像在上有两个不同交点。

 

查看答案和解析>>

已知函数

⑴若的定义域和值域均是,求实数的值;

⑵若上是减函数,且对任意的,总有,求实数的取值范围.

【解析】(1)先对函数配方,找出对称轴,明确单调性,再利用函数最值求解.

(2)在(1)的基础上,由a≥2,明确对称轴x=a∈[1,1+a]且(a+1)-a≤a-1,从而明确了单调性,再求最值.利用绝对值的性质,即得结果.

 

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>


同步练习册答案