题目列表(包括答案和解析)
设
在
内的导数有意义,则
是
在
内单调递减的( )
充分而不必要条件
必要而不充分条件
充要条件
即不充分也不必要条件
设
在
内的导数有意义,则
是
在
内单调递减的( )
充分而不必要条件
必要而不充分条件
充要条件
即不充分也不必要条件
若函数
在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数
是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数
为“优美函数”,求实数
的取值范围.
【解析】第一问中,利用定义,判定由题意得
,由
,所以![]()
第二问中, 由题意得方程
有两实根
设
所以关于m的方程
在
有两实根,
即函数
与函数
的图像在
上有两个不同交点,从而得到t的范围。
解(I)由题意得
,由
,所以
(6分)
(II)由题意得方程
有两实根
设
所以关于m的方程
在
有两实根,
即函数
与函数
的图像在
上有两个不同交点。
![]()
已知函数![]()
⑴若
的定义域和值域均是
,求实数
的值;
⑵若
在
上是减函数,且对任意的
,总有
≤
,求实数
的取值范围.
【解析】(1)先对函数
配方,找出对称轴,明确单调性,再利用函数最值求解.
(2)在(1)的基础上,由a≥2,明确对称轴x=a∈[1,1+a]且(a+1)-a≤a-1,从而明确了单调性,再求最值.利用绝对值的性质,即得结果.
![]()
已知函数
的最小值为0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若对任意的
有
≤
成立,求实数
的最小值;
(Ⅲ)证明
(
).
【解析】(1)解:
的定义域为![]()
![]()
由
,得![]()
当x变化时,
,
的变化情况如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
极小值 |
|
因此,
在
处取得最小值,故由题意
,所以![]()
(2)解:当
时,取
,有
,故
时不合题意.当
时,令
,即![]()
![]()
令
,得![]()
①当
时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当
时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故
不合题意.
综上,k的最小值为
.
(3)证明:当n=1时,不等式左边=
=右边,所以不等式成立.
当
时,![]()
![]()
![]()
在(2)中取
,得
,
从而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
综上,
,![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com