21.(1). ∴ f ′(x) = 3x2-x-2.由 f ′(x)>0 得 或 x>1. ∴ 增区间为..减区间为. -------- 4分 (2)f ′(x) = 3x2-2x-2 = 0.得x =.x = 1. 又 f (0) = 5.f (1) =.f (2) = 7.所以 f (x)|max = 7.得 k>7. -------- 8分 (3)f ′(x) = 3x2-2mx-2.其图象恒过定点.由此可知.3x2-2mx-2 = 0必有一正根和一负根.只需要求正根在(0.1)上. ∴ f ′(0) · f ′(1)<0.∴ m<. -------- 12分 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)的图象在[a,b]上连续不断,定义:

其中,min{f(x)|x∈D}表示函数f(x)在区间上的最小值,max{f(x)|x∈D}表示函数f(x)在区间上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数为区间[a,b]上的“k阶收缩函数”.

(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;

(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出相应的k;如果不是,请说明理由;

(3)已知b>0函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.

(1)已知函数f(x)=2sinx,x∈[0,],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;

(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.

(1)已知函数f(x)=2sinx,x∈[0,],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;

(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>


同步练习册答案