题目列表(包括答案和解析)
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵
,∴
,…………………1分
∵
,得到三角关系是
,结合
,解得。
(2)由
,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②联立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
将①代入②中,可得
③ …………………4分
将③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,从而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
综上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
综上可得
…………………12分
(若用
,又∵
∴
,
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验如下:
|
零件的个数 |
2 |
3 |
4 |
5 |
|
加工的时间 |
2.5 |
3 |
4 |
4.5 |
(1)在给定坐标系中画出表中数据的散点图;
(2)求
关于
的线性回归方程
;
(3)试预测加工10个零件需要多少时间?
(
,
)
![]()
【解析】第一问中,利用表格中的数据先作出散点图
第二问中,求解均值a,b的值,从而得到线性回归方程。
第三问,利用回归方程将x=10代入方程中,得到y的预测值。
解:(1)散点图(略) (2分)
(2)
(4分)
![]()
∴
(7分)
(8分)∴回归直线方程:
(9分)
(3)当
∴预测加工10个零件需要8.05小时。
在△
中,∠
,∠
,∠
的对边分别是
,且
.
(1)求∠
的大小;(2)若
,
,求
和
的值.
【解析】第一问利用余弦定理得到
第二问
(2) 由条件可得 ![]()
将
代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com