题目列表(包括答案和解析)
已知
、
,椭圆C的方程为
,
、
分别为椭圆C的两个焦点,设
为椭圆C上一点,存在以
为圆心的
与
外切、与
内切
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
作斜率为
的直线与椭圆C相交于A、B两点,与
轴相交于点D,若
求
的值;
(Ⅲ)已知真命题:“如果点T(
)在椭圆
上,那么过点T
的椭圆的切线方程为
=1.”利用上述结论,解答下面问题:
已知点Q是直线
上的动点,过点Q作椭圆C的两条切线QM、QN,
M、N为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。
设椭圆
的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(1)求椭圆
的离心率;
(2)若过
三点的圆恰好与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点
作斜率为![]()
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得
,如果存在,求出
的取值范围,如果不存在,说明理由。
![]()
设椭圆
的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(1)求椭圆
的离心率;
(2)若过
三点的圆恰好与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com