题目列表(包括答案和解析)
设椭圆
的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线
与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若
,证明直线
的斜率
满足![]()
【解析】(1)解:设点P的坐标为
.由题意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以椭圆的离心率![]()
(2)证明:(方法一)
依题意,直线OP的方程为
,设点P的坐标为
.
由条件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依题意,直线OP的方程为
,设点P的坐标为
.
由P在椭圆上,有![]()
因为
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
(08年杭州市质检二)(14分)如图,在椭圆
中,点
是左焦点,
,
分别为右顶点和上顶点,点
为椭圆的中心。又点
在椭圆上,且满足条件:
,点
是点
在x轴上的射影。
(1)求证:当
取定值时,点
必为定点;
(2)如果点
落在左顶点与左焦点之间,试求椭圆离心率的取值范围;
(3)如果以
为直径的圆与直线
相切,且凸四边形
的面积等于
,求椭圆的方程。
![]()
已知椭圆
的对称轴为坐标轴,焦点是(0,
),(0,
),又点![]()
在椭圆
上.
(1)求椭圆
的方程;
(2)已知直线
的斜率为
,若直线
与椭圆
交于
、
两点,求
面积的最大值.
2.A解析:由
知函数在
上有零点,又因为函数在(0,+
)上是减函数,所以函数y=f(x) 在(0,+
)上有且只有一个零点不妨设为
,则
,又因为函数是偶函数,所以
=0并且函数在(0,+
)上是减函数,因此-
是(-
,0)上的唯一零点,所以函数共有两个零点
下列叙述中,是随机变量的有( )
①某工厂加工的零件,实际尺寸与规定尺寸之差;②标准状态下,水沸腾的温度;③某大桥一天经过的车辆数;④向平面上投掷一点,此点坐标.
A.②③ B.①② C.①③④ D.①③
(09年东城区期末理)(13分)
已知椭圆
的对称轴为坐标轴,且抛物线
的焦点是椭圆
的一个焦点,又点![]()
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知直线
的方向向量为
,若直线
与椭圆
交于
、
两点,求
面积的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com