17.某工厂规定.如果工人在一个季度里有1个月完成生产任务.可得奖金90元,如果有2个月完成生产任务.可得奖金210元,如果有3个月完成生产任务.可得奖金330元,如果工人三个月都未完成任务.则没有奖金.假设某工人每月完成任务与否是等可能的.求此工人在一个季度里所得奖金的期望. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

某工厂为了保障安全生产,每月初组织工人参加一次技能测试. 甲、乙两名工人通过每次测试的概率分别是和.假设两人参加测试是否通过相互之间没有影响.

(Ⅰ)求甲工人连续3个月参加技能测试至少1次未通过的概率;

(Ⅱ)工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求乙工人恰好参加4次测试后被撤销上岗资格的概率.

查看答案和解析>>

(本小题满分12分)某工厂为了保障安全生产,每月初组织工人参加一次技能测试. 甲、乙两名工人通过每次测试的概率分别是和.假设两人参加测试是否通过相互之间没有影响.

(Ⅰ)求甲工人连续3个月参加技能测试至少1次未通过的概率;

(Ⅱ)工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求乙工人恰好参加4次测试后被撤销上岗资格的概率.

查看答案和解析>>

(本小题满分12分)

    某工厂在试验阶段大量生产一种零件.这种零件有两项技术指标需要检测,设各项技术指标达标与否互不影响.若项技术指标达标的概率为,有且仅有一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品.

(Ⅰ)求一个零件经过检测为合格品的概率;

(Ⅱ)任意依次抽出个零件进行检测,求其中至多个零件是合格品的概率;

(Ⅲ)任意依次抽取该种零件个,设表示其中合格品的个数,求

查看答案和解析>>

(本小题满分12分)

某工厂为了保障安全生产,每月初组织工人参加一次技能测试. 甲、乙两名工人通过每次测试的概率分别是和.假设两人参加测试是否通过相互之间没有影响.

(Ⅰ)求甲工人连续3个月参加技能测试至少1次未通过的概率;

(Ⅱ)工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求乙工人恰好参加4次测试后被撤销上岗资格的概率.

查看答案和解析>>

(本小题满分12分)某工厂为了保障安全生产,每月初组织工人参加一次技能测试. 甲、乙两名工人通过每次测试的概率分别是和.假设两人参加测试是否通过相互之间没有影响.

(Ⅰ)求甲工人连续3个月参加技能测试至少1次未通过的概率;

(Ⅱ)工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求乙工人恰好参加4次测试后被撤销上岗资格的概率.

查看答案和解析>>

一.选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

A

D

C

B

B

C

A

C

B

A

二.填空题

11.      12. ②     13.       14. 120     15.

三.解答题

16.解:(Ⅰ).  …………………………………3分

,得. ………………………………5分

(Ⅱ)由(Ⅰ)得.  ………………8分

,得.

,即时,函数 有最大值.  ……………………12分

17.解:设此工人一个季度里所得奖金为,则是一个离散型随机变量.由于该工人每月完成任务与否是等可能的,所以他每月完成任务的概率等于.   …………………2分

所以,  ,,

,.    …………8分

于是.

所以此工人在一个季度里所得奖金的期望为153. 75元.     ……………………12分

18.解:(Ⅰ)取BC的中点H,连结PH, 连结AH交BD于E.

.    ……………………………2分

又面,.

  ,.

,.

,即.        ………………………………………………4分

因为AH为PA在平面上的射影,.   ……………………………6分

(Ⅱ)连结PE,则由(Ⅰ)知.

为所求二面角的平面角.       ……………………………………………8分

中,由,求得.

.

即所求二面角的正切值为.     …………………………………………………12分

另解:(Ⅰ)建系设点正确2分,求出两个法向量2分,判断正确2分;

(Ⅱ)求出两个法向量3分,求出余弦值2分,求出正切值1分.

19. 解:(Ⅰ)设,则

,.

即点C的轨迹方程为.    …………………………………………………3分

(Ⅱ)由题意.

. ……………5分

.

,

.       ……………………………8分

(Ⅲ)..

.

∴双曲线实轴长的取值范围是.   ………………………………………………12分

20.解: (Ⅰ)由已知得的定义域为,.   ………………2分

由题意得对一切恒成立,

      ……………………………………………5分

时,,

.故.      …………………………………………7分

(Ⅱ)假设存在正实数,使得成立.

.  …………………9分

,得,.由于,故应舍去.

时,    ………………………………………11分

,解得.   …………………………13分

另解: 假设存在正实数,使得成立.

,则.    ………………………9分

,解得.

因为,上单调递增,在上单调递减.

.    … ……………………………………11分

,解得.   …………………………13分

21.解:(Ⅰ)由已知,得.  

则数列是公比为2的等比数列.    ……………………………………………2分

.   ……………………………………………4分

(Ⅱ).   …………………6分

恒成立,则

解得

故存在常数A,B,C,满足条件.       …………………………………………9分

   (Ⅲ)由(Ⅱ)知:

.    …………………14分

=

 

 


同步练习册答案