已知椭圆E的中心在坐标原点.焦点在x轴上.离心率.直线与E相交于A.B两点.与x轴相交于C点.且.(Ⅰ)求椭圆E的方程, 查看更多

 

题目列表(包括答案和解析)

已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(-2,0),B(2,0),C(1,
32
)
三点
(1)求椭圆方程
(2)若此椭圆的左、右焦点F1、F2,过F1作直线L交椭圆于M、N两点,使之构成△MNF2证明:△MNF2的周长为定值.

查看答案和解析>>

已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(-2,0)、B(2,0)、C(1,
32
)
三点.
(1)求椭圆E的方程:
(2)若点D为椭圆E上不同于A、B的任意一点,F(-1,0),H(1,0),当△DFH内切圆的面积最大时.求内切圆圆心的坐标.

查看答案和解析>>

已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为
1
2
,且椭圆E上一点到两个焦点距离之和为4;l1,l2是过点P(0,2)且互相垂直的两条直线,l1交E于A,B两点,l2交E交C,D两点,AB,CD的中点分别为M,N.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求l1的斜率k的取值范围;
(Ⅲ)求
OM
ON
的取值范围.

查看答案和解析>>

已知椭圆E的中心在坐标原点,焦点在x轴上,短轴长与焦距相等,直线x+y-1=0与E相交于A,B两点,与x轴相交于C点,且
AC
=3
CB

(Ⅰ)求椭圆E的方程;
(Ⅱ)如果椭圆E上存在两点M,N关于直线l:y=4x+m对称,求实数m的取值范围.

查看答案和解析>>

已知椭圆E的中心在坐标原点,焦点在x轴上,且经过A(-2,0),B(1,
32
)
两点.
(1)求椭圆E的方程;
(2)若椭圆E的左、右焦点分别是F、H,过点H的直线l:x=my+1与椭圆E交于M、N两点,则△FMN的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线l的方程;若不存在,请说明理由.

查看答案和解析>>

一.选择题:CDDA  DDBA  BBDC .

二.填空题:(13)60,(14),(15),(16)①②④ .

三.解答题:

(17)解:(Ⅰ)∵

.                 ………3分

∴令,        ………4分

的递减区间是;              ………5分

,           ………6分

的递增区间是.              ………7分

(Ⅱ)∵,∴,                     ………8分

      又,所以,根据单位圆内的三角函数线

可得.                                     ………10分

(18)解:由题意,                                       ………1分

,                                        ………2分

,                              ………4分

,                            ………6分

,                      ………8分

 

 

文本框:  
2	3	4	5
 
 
 
 
 


所以的分布列为:                                    

 

 

 

………9分

.          ………12分

(19)解:(Ⅰ)由题设可知,.                    ………1分

,                                 ………3分

,              ………5分

.                                             ………6分

(Ⅱ)设.                        ………7分

显然,时,,                                       ………8分

, ∴当时,,∴,                       

时,,∴,                             ………9分

时,,∴,                        ………10分

时,恒成立,

恒成立,                               ………11分

∴存在,使得.                                 ………12分

(20)解:(Ⅰ)∵PA⊥平面ABCD,PC⊥AD,∴AC⊥AD.                 ………1分

设AB=1,则AC=,CD=2.                                     ………2分

设F是AC与BD的交点,∵ABCD为梯形,

∴△ABF~△CDF, ∴DF:FB=2:1,                               ………3分

又PE:EB=2:1,∴DF:FB=PE:EB,∴EF∥PD,                   ………5分

又EF在平面ACE内,∴PD∥平面ACE.                             ………6分

(Ⅱ)以A为坐标原点,AB为y轴,AP为z轴建立空间直角坐标系,如图.

设AB=1,则,             ………7分

,     ………8分

,∵,∴,  …9分

,∵,∴, …10分

,      ………11分

∴二面角A-EC-P的大小为.………12分

注:学生使用其它解法应同步给分.

 

 

(21)解:(Ⅰ)设所求的椭圆E的方程为,                ………1分

,将代入椭圆得,     ………2分

,又,∴ ,                        ………3分

, ………4分,       ,              ………5分

∴所求的椭圆E的方程为.                                ………6分

(Ⅱ)设,则,          ………7分

又设MN的中点为,则以上两式相减得:,         ………8分

,………9分,     ,                  ………10分

又点在椭圆内,∴,                               ………11分

即,,∴.                         ………12分

注:学生使用其它解法应同步给分.

(22)解:(Ⅰ)∵,            ……2分

时,递增,时,递减,时,递增,

所以的极大值点为,极小值点为,                     ……4分

,              ……5分

的图像如右图,供评卷老师参考)

所以,的最小值是.                                      ……6分

(II)由(Ⅰ)知的值域是:

时,为,当时,为.                ……8分                 

的值域是为,             ……9分

所以,当时,令,并解得

时,令,无解.

因此,的取值范围是.                                     ……12分

注:学生使用其它解法应同步给分.

 

 


同步练习册答案