题目列表(包括答案和解析)
| C | D | 总计 | |
| A | 100吨 | ||
| B | x吨 | 150吨 | |
| 总计 | 120吨 | 130吨 | 250吨 |
| C | D | 总计 | |
| A | 200吨 | ||
| B | x吨 | 300吨 | |
| 总计 | 240吨 | 260吨 | 500吨 |
(12分)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.
请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;
|
| C | D | 总计 |
| A |
|
| 200吨 |
| B | x吨 |
| 300吨 |
| 总计 | 240吨 | 260吨 | 500吨 |
(1)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的关系式,并求总运费最小的调运方案;
(2)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少
元(
>0),其余线路的运费不变,试讨论总运费最小的调运方案.
(3)不等式与不等式组参考答案仅供参考
| | C | D | 总计 |
| A | | | 200吨 |
| B | x吨 | | 300吨 |
| 总计 | 240吨 | 260吨 | 500吨 |
一、选择题
1
2
3
4
5
6
7
8
9
10
11
12
C
B
D
C
A
D
B
D
B
C
A
B
二、填空题
13、
14、
15、
16、3cm 17、
18、x=5 19、4:5
20、解原式=
=
-
+1+1=2
21、证略
22、解(1)由题意,设二次函数的解析式为y=a(x-1)(x-5),即y=ax2-6ax+5a
对称轴为x=3,设对称轴与x轴的交点为C(3,0)
∴OC=3 ∵OB=5 ∴BC=2
∵P是顶点,BP=
∴PC=4 P(3,-4)
∴
∴
∴二次函数的解析式为
(2)略 (3)当1<x<5时,y<0
23、(1)240-x,x-40,300-x
(2)w=9200+2x(40≤x≤2100)
W最小=9200+80=9280元
24、解:过E作EF⊥AB于F ∵AB⊥BC,DC⊥BC ∴四边形BCEF是矩形,
EF=BC=24,∠AEF=32°∵tan∠AEF=
∴AF=EF tan∠AEF=24×
=15
∴EC=BF=40-15=25,25÷25=10,故刘卉家住的楼层至少是10层。
25、(1)证明:连接CO并延长交⊙O于M,连接AM
∵PC2=PA.PB ∴
∵∠P=∠P ∴△PAC∽△PCB ∠PCA=∠B
∵∠B=∠M ∴∠M=∠PCA
∵CM是直径 ∴∠MAC=90° ∴∠ACM+∠M=90° ∴∠ACM+∠PCA=90°
即∠PCM=90° ∴CM⊥PC ∴PC是⊙O的切线。
(2)连接AO,并延长AO交⊙O于N,连接BN
∵AN是直径 ∴∠ABN=90° ∠N=∠ACB,AN=12
在Rt△ABN中,AB=ANsin∠ACB=12sin∠ACB=12×
=
(3)连接OD交AB于F,∴OD⊥AB ∵D是劣弧AB的中点 ∴∠ACD=∠BCD
∵∠PCA=∠B ∴∠PCE=∠PEC ∴PC=PE 由△PCA∽△PBC 得 PC=3PA
∵PC2=PA.PB ∴9PA2=PA.PB ∴9PA=PB=PA+AB ∴8PA=AB=
∴PA=
∴PC=PE=
AE=
,AB=
,AF=
,EF=
在Rt△OAF中,可求得OF=4 ∴DF=2 DE=3
∵AE?EB=DE?CE ∴CE=5
26、解:(1)A(2,0)、B(10,0)、C(10,8)、D(2,8)
(2)过P作PE⊥X轴于E
∴PE=AE=
BC=4 OE=6 ∴P(6,4)
设抛物线
,即
∴
故二次函数的解析式为:
,顶点(5,
)
(3)存在点Q使△QAB的面积为16,
Q1(4,4)、Q2(6,4)Q3(-2,-4)Q4(-4,12)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com