所以由归纳推理.得..故此题选A.点评:数列问题有它的特殊性.在一些规律不明显的情况下.通过解决数列的前几项归纳猜测其一般规律的方法是经常使用的.在数列问题中蕴含着可以使用合情推理解决的大量问题.高考中合情推理的题目主要的知识依托就是数列.不等式和立体几何.重点五.综合法与分析法 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=
x
x+2
(x>0),观察:
 f1(x)=f(x)=
x
x+2

 f2(x)=f(f1(x))=
x
3x+4

 f3(x)=f(f2(x))=
x
7x+8

 f4(x)=f(f3(x))=
x
15x+16


根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=
 

查看答案和解析>>

设函数f(x)=
x
x+2
(x>0)
,定义fn(x),n∈N如下:当n=1时,f1(x)=f(x);当n∈N且n≥2时,fn(x)=f(fn-1(x)).观察:
f1(x)=f(x)=
x
x+2

f2(x)=f(f1(x))=
x
3x+4

f3(x)=f(f2(x))=
x
7x+8

f4(x)=f(f3(x))=
x
15x+16


根据以上事实,由归纳推理可得:当n∈N时,fn(x)=
x
(2n-1)x+2n
x
(2n-1)x+2n

查看答案和解析>>

5、观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=(  )

查看答案和解析>>

观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=(  )

查看答案和解析>>

设函数f(x)=
x
x+1
(x>0)
,观察:f1(x)=f(x)=
x
x+1
f2(x)=f(f1(x))=
x
2x+1
f3(x)=f(f2(x))=
x
3x+1
f4(x)=f(f3(x))=
x
4x+1
,根据以上事实,由归纳推理可得:当n∈N+且n≥2时,fn(x)=f(fn-1(x))=
x
nx+1
x
nx+1

查看答案和解析>>


同步练习册答案