(Ⅱ)当k为偶数时.数列{}满足.证明:数列{}中不存在成等差数列的三项, 查看更多

 

题目列表(包括答案和解析)

设函数表示f(x)导函数。

    (I)求函数一份(x))的单调递增区间;

    (Ⅱ)当k为偶数时,数列{}满足.证明:数列{}中

不存在成等差数列的三项;

(Ⅲ)当后为奇数时,证明:对任意正整数,n都有成立.

查看答案和解析>>

设函数表示f(x)导函数。
(I)求函数一份(x))的单调递增区间;
(Ⅱ)当k为偶数时,数列{}满足.证明:数列{}中
不存在成等差数列的三项;
(Ⅲ)当后为奇数时,证明:对任意正整数,n都有成立.

查看答案和解析>>

(09年潍坊一模文)(14分)

    设函数表示f(x)导函数。

    (I)求函数一份(x))的单调递增区间;

    (Ⅱ)当k为偶数时,数列{}满足.证明:数列{}中

不存在成等差数列的三项;

  (Ⅲ)当后为奇数时,证明:对任意正整数,n都有成立.

查看答案和解析>>

设函数f(x)=x2-2(-1)klnx(k∈N*),表示f(x)导函数.

(Ⅰ)求函数一份(x)的单调递增区间;

(Ⅱ)当k为偶数时,数列{an}满足a1=1,.证明:数列{an2}中不存在成等差数列的三项;

(Ⅲ)当k为奇数时,设,数列{bn}的前n项和为Sn,证明不等式对一切正整数n均成立,并比较S2009-1与ln2009的大小.

查看答案和解析>>

设函数f(x)=x2-2(-1)klnx(k∈N*),(x)表示f(x)导函数.

(Ⅰ)求函数一份(x)的单调递增区间;

(Ⅱ)当k为偶数时,数列{an}满足a1=1,an(an)-3.证明:数列{}中不存在成等差数列的三项;

(Ⅲ)当k为奇数时,设bn(n)-n,数列{bn}的前n项和为Sn,证明不等式对一切正整数n均成立,并比较S2009-1与In2009的大小.

查看答案和解析>>

 

 

 

 

 

 


同步练习册答案