题目列表(包括答案和解析)
| x2 | e |
(1)求证:曲线C都表示圆,并且这些圆心都在同一条直线上;
(2)证明:曲线C过定点;
(3)若曲线C与x轴相切,求k的值.
(1)求证:曲线C都表示圆,并且这些圆心都在同一条直线上;
(2)证明:曲线C过定点;
(3)若曲线C与x轴相切,求k的值.
设直线
. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有
. 则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数
.求证:
为曲线
的“上夹线”.
(Ⅱ)观察下图:
根据上图,试推测曲线
的“上夹线”的方程,并给出证明.
设直线
. 若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有
. 则称直线l为曲线S的“上夹线”.
(1) 类比“上夹线”的定义,给出“下夹线”的定义;
(2) 已知函数
取得极小值
,求a,b的值;
(3) 证明:直线
是(2)中曲线
的“上夹线”。
1.解:依题设有:
………………………………………4分
令
,则
…………………………………………5分
…………………………………………7分
.files/image521.gif)
.files/image525.gif)
.files/image527.gif)
.files/image527.gif)
………………………………10分
2.解:以有点为原点,极轴为
轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)
,
,由
得
.
所以
.
即
为圆
的直角坐标方程. ……………………………………3分
同理
为圆
的直角坐标方程. ……………………………………6分
(2)由
相减得过交点的直线的直角坐标方程为
. …………………………10分
3.(必做题)(本小题满分10分)
解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的
, 则其概率为
…………………………………………4分
答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为.files/image557.gif)
(2)随机变量.files/image559.gif)
……………………5分
…………………………6分
………………………………7分
∴随机变量
的分布列为
.files/image291.gif)
2
3
4
P
.files/image569.gif)
.files/image571.gif)
.files/image573.gif)
∴
…………………………10分
4.(必做题)(本小题满分10分)
(1)
,
,
,
,.files/image587.gif)
……………………………………3分
(2)平面BDD1的一个法向量为.files/image591.gif)
设平面BFC1的法向量为.files/image593.gif)
∴.files/image597.gif)
取
得平面BFC1的一个法向量.files/image601.gif)
∴所求的余弦值为
……6分
(3)设
(
)
,由
得.files/image615.gif)
即
,.files/image619.gif)
.files/image621.gif)
.files/image625.gif)
当
时,.files/image630.gif)
当
时,∴
……………………………………10分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com