(1)证明:E.P分别为AC.A′C的中点. 查看更多

 

题目列表(包括答案和解析)

(2005辽宁,17)如下图,已知三棱锥PABC中,EF分别是ACAB的中点,△ABC,△PEF都是正三角形,PFAB

(1)证明:PC⊥平面PAB

(2)求二面角PABC的平面角的余弦值;

(3)若点PABC在一个表面积为12π的球面上,求△ABC的边长.

查看答案和解析>>

如图所示,已知ABC是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且,|BC|=2|AC|.

(1)求椭圆E的方程;
(2)在椭圆E上是否存点Q,使得?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.
(3)过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:为定值.

查看答案和解析>>

如图所示,已知ABC是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且,|BC|=2|AC|.

(1)求椭圆E的方程;
(2)在椭圆E上是否存点Q,使得?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.
(3)过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:为定值.

查看答案和解析>>

1.解:依题设有:     ………………………………………4分

 令,则           …………………………………………5分

           …………………………………………7分

  ………………………………10分

2.解:以有点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1),由

所以

为圆的直角坐标方程.  ……………………………………3分

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

3.(必做题)(本小题满分10分)

解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的, 则其概率为                …………………………………………4分

    答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为

(2)随机变量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴随机变量的分布列为

 

2

3

4

P

                    …………………………10分

4.(必做题)(本小题满分10分)

(1) 

              ……………………………………3分

(2)平面BDD1的一个法向量为

设平面BFC1的法向量为

得平面BFC1的一个法向量

  ∴所求的余弦值为    ……6分

(3)设

,由

    

时,

时,∴   ……………………………………10分