=?----------------12分 查看更多

 

题目列表(包括答案和解析)

(12分)如图,已知圆C:,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足=,?=0,点N的轨迹为曲线E.

(Ⅰ)求曲线E的方程;

(Ⅱ)若过定点A(1,0)的直线交曲线E于不同的两点G、H,

且满足∠GOH为锐角,求直线的斜率k的取值范围.

查看答案和解析>>

(本小题满分12分)

已知a=(1,2), b=(-2,1),xaby=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR x?y=5,求证k≥1.

查看答案和解析>>

(08年平遥中学) (12分)  已知点A(-2,0),B(2,0),动点P满足:∠APB=2θ,且|PA||PB|sin2θ=2

(1)求动点P的轨迹Q的方程;

(2)过点B的直线l与轨迹Q交于两点M,N。试问x轴上是否存在定点C,使?为常数,若存在,求出点C的坐标;若不存在,说明理由。

查看答案和解析>>

(08年平遥中学) (12分) 已知点A(-2,0),B(2,0),动点P满足:∠APB=2θ,且|PA||PB|sin2θ=2

(1)求动点P的轨迹Q的方程;

(2)过点B的直线l与轨迹Q交于两点M,N。试问x轴上是否存在定点C,使?为常数,若存在,求出点C的坐标;若不存在,说明理由。

查看答案和解析>>

(08年平遥中学) (12分) 已知点A(-2,0),B(2,0),动点P满足:∠APB=2θ,且|PA||PB|sin2θ=2

(1)求动点P的轨迹Q的方程;

(2)过点B的直线l与轨迹Q交于两点M,N。试问x轴上是否存在定点C,使?为常数,若存在,求出点C的坐标;若不存在,说明理由。

查看答案和解析>>

1.解:依题设有:     ………………………………………4分

 令,则           …………………………………………5分

           …………………………………………7分

  ………………………………10分

2.解:以有点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1),由

所以

为圆的直角坐标方程.  ……………………………………3分

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

3.(必做题)(本小题满分10分)

解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的, 则其概率为                …………………………………………4分

    答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为

(2)随机变量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴随机变量的分布列为

 

2

3

4

P

                    …………………………10分

4.(必做题)(本小题满分10分)

(1) 

              ……………………………………3分

(2)平面BDD1的一个法向量为

设平面BFC1的法向量为

得平面BFC1的一个法向量

  ∴所求的余弦值为    ……6分

(3)设

,由

    

时,

时,∴   ……………………………………10分


同步练习册答案