∴直线与.都相切.且切于同一点() -------5分 查看更多

 

题目列表(包括答案和解析)

已知抛物线与圆 有一个公共点A,且在A处两曲线的切线为同一直线l。
(1)求r;
(2)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离。

查看答案和解析>>

已知抛物线C:与圆有一个公共点A,且在A处两曲线的切线与同一直线l

(I)     求r;

(II)   设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离。

【解析】本试题考查了抛物线与圆的方程,以及两个曲线的公共点处的切线的运用,并在此基础上求解点到直线的距离。

【点评】该试题出题的角度不同于平常,因为涉及的是两个二次曲线的交点问题,并且要研究两曲线在公共点出的切线,把解析几何和导数的工具性结合起来,是该试题的创新处。另外对于在第二问中更是难度加大了,出现了另外的两条公共的切线,这样的问题对于我们以后的学习也是一个需要练习的方向。

 

 

查看答案和解析>>

已知曲线C1:y=数学公式+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.
(I)求证:直线m与曲线C1、C2都相切,且切于同一点;
(II)设直线x=t(t>0)与曲线C1、C2及直线m分别交于M、N、P,记f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.

查看答案和解析>>

已知曲线C1:y=+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.
(I)求证:直线m与曲线C1、C2都相切,且切于同一点;
(II)设直线x=t(t>0)与曲线C1、C2及直线m分别交于M、N、P,记f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.

查看答案和解析>>

已知曲线C1:y=
x2e
+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.
(I)求证:直线m与曲线C1、C2都相切,且切于同一点;
(II)设直线x=t(t>0)与曲线C1、C2及直线m分别交于M、N、P,记f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.

查看答案和解析>>

1.解:依题设有:     ………………………………………4分

 令,则           …………………………………………5分

           …………………………………………7分

  ………………………………10分

2.解:以有点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1),由

所以

为圆的直角坐标方程.  ……………………………………3分

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

3.(必做题)(本小题满分10分)

解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的, 则其概率为                …………………………………………4分

    答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为

(2)随机变量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴随机变量的分布列为

 

2

3

4

P

                    …………………………10分

4.(必做题)(本小题满分10分)

(1) 

              ……………………………………3分

(2)平面BDD1的一个法向量为

设平面BFC1的法向量为

得平面BFC1的一个法向量

  ∴所求的余弦值为    ……6分

(3)设

,由

    

时,

时,∴   ……………………………………10分


同步练习册答案