解:(Ⅰ)依题意.由a2+b2=4.得双曲线方程为(0<a2<4). 查看更多

 

题目列表(包括答案和解析)

甲船由岛出发向北偏东的方向作匀速直线航行,速度为海里∕小时,在甲船从岛出发的同时,乙船从岛正南海里处的岛出发,朝北偏东的方向作匀速直线航行,速度为海里∕小时。

⑴求出发小时时两船相距多少海里?

⑴   两船出发后多长时间相距最近?最近距离为多少海里?

【解析】第一问中根据时间得到出发小时时两船相距的海里为

第二问设时间为t,则

利用二次函数求得最值,

解:⑴依题意有:两船相距

答:出发3小时时两船相距海里                           

⑵两船出发后t小时时相距最近,即

即当t=4时两船最近,最近距离为海里。

 

查看答案和解析>>

如图,,…,,…是曲线上的点,,…,,…是轴正半轴上的点,且,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点).

(1)写出之间的等量关系,以及之间的等量关系;

(2)求证:);

(3)设,对所有恒成立,求实数的取值范围.

【解析】第一问利用有得到

第二问证明:①当时,可求得,命题成立;②假设当时,命题成立,即有则当时,由归纳假设及

第三问 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

解:(1)依题意,有,………………4分

(2)证明:①当时,可求得,命题成立; ……………2分

②假设当时,命题成立,即有,……………………1分

则当时,由归纳假设及

解得不合题意,舍去)

即当时,命题成立.  …………………………………………4分

综上所述,对所有.    ……………………………1分

(3) 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

.……………2分

由题意,有. 所以,

 

查看答案和解析>>

记I为虚数集,设a,b∈R,x,y∈I.则下列类比所得的结论正确的是(  )

查看答案和解析>>

14、给出下面几个推理:
①由“6=3+3,8=3+5,10=3+7,12=5+7…”得到结论:任何一个不小于6的偶数都等于两个奇质数之和;
②由“三角形内角和为180°”得到结论:直角三角形内角和为180°;
③由“正方形面积为边长的平方”得到结论:正方体的体积为边长的立方;
④由“a2+b2≥2ab(a,b∈R)”推得sin2x≤1.
其中是演绎推理的序号是
②④

查看答案和解析>>

记I为虚数集,设a,b∈R,x,y∈I.则下列类比所得的结论正确的是( )
A.由a•b∈R,类比得x•y∈I
B.由a2≥0,类比得x2≥0
C.由(a+b)2=a2+2ab+b2,类比得(x+y)2=x2+2xy+y2
D.由a+b>0⇒a>-b,类比得x+y>0⇒x>-y

查看答案和解析>>


同步练习册答案