(2)若.求的最大边长的最小值. 查看更多

 

题目列表(包括答案和解析)

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=BN=(1)求MN的长;

(2)当为何值时,MN的长最小;  (3)当MN长最小时,求面MNA与面MNB所成的二面角的大小。

查看答案和解析>>

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<),
(1)求MN的长;
(2)当a为何值时,MN的长最小;
(3)当MN长最小时,求面MNA与面MNB所成的二面角α的大小。

查看答案和解析>>

在△中,内角对边的边长分别是,已知

(Ⅰ)若,且为钝角,求内角的大小;

(Ⅱ)若,求△面积的最大值。

查看答案和解析>>

如图,四边形ABCD是一个边长为100米的正方形地皮,其中ATPS是一半径为90米的扇形小山,其余部分都是平地,P是弧TS上一点,现有一位开发商想在平 地上建造一个两边落在BC与CD上的长方形停车场PQCR.

 
    

(Ⅰ)若∠PAT=θ,试写出四边形RPQC的面积S关于θ

          的函数表达式,并写出定义域;

      (Ⅱ)试求停车场的面积最大值。

查看答案和解析>>

如图,四边形ABCD是一个边长为100米的正方形地皮,其中ATPS是一半径为90米的扇形小山,其余部分都是平地,P是弧TS上一点,现有一位开发商想在平地上建造一个两边落在BC与CD上的长方形停车场PQCR.


 
    

 
(Ⅰ)若∠PAT=θ,试写出四边形RPQC的面积S关于θ
的函数表达式,并写出定义域;
(Ⅱ)试求停车场的面积最大值。

查看答案和解析>>


同步练习册答案