题目列表(包括答案和解析)
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点
已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)
(1)若a=1,b=–2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图像上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+
对称,求b的最小值.
对于函数f(x),若存在xo∈R,使f(xo)=xo成立,则xo为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求 a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+
对称,求b的最小值.
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求 a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+
对称,求b的最小值.
已知椭圆
的左右焦点分别为
、
,短轴两个端点为
、
,且四边形
是边长为2的正方形.
(1)求椭圆方程;
(2)若
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
,证明:
为定值;
(3)在(2)的条件下,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点?若存在,求出点Q的坐标;若不存在,请说明理由.
一、填空题
1.
2.
3.156
4. -
5. 
6.
7.
8.(理)
(文)
9.0
10.
11.(理)
(文)
二、选择题
12.C 13.B 14.(理)C (文)B 15.B
三、解答题
16. 【解】(1)由已知:
, (2分)
即
, (4分)
∴
,故
。
(6分)
(2)由
,得
, (8分)
∴
,
。 (10分)
故
。
(12分)
17.【解】
(理)设三次事件依次为
,命中率分别为
,
(1)令
,则
,∴
,
,
。 (6分)
(2)
。 (13分)
(文)抛物线
的准线是
,
(3分)
双曲线
的两条渐近线是
。 (6分)
三条线为成得三角形区域的顶点为
,
,
,(10分)
当
时,
。
(13分)
18.【解】(1)
,
。(4分)
(2)令
,
,
,(8分)
即三位市民各获得140、100和110元折扣。(10分)
(3)
(元)。(16分)
19.【解】(1)直线
的法向量
,
的方程:
,
即为
;…(2分)
直线
的法向量
,
的方程:
,
即为
。 (4分)
(2)
。 (6分)
设点
的坐标为
,由
,得
。(8分)
由椭圆的定义的知存在两个定点
,使得
恒为定值4。
此时两个定点
为椭圆的两个焦点。(10分)
(3)设
,
,则
,
,
由
,得
。(12分)
;
当且仅当
或
时,
取最小值
。(14分)
,故
与
平行。(16分)
20.【解】(1)由
,得
。由
,得第二行的公差
,
,∴
。(2分)
由
,
,得
,∴
。(4分)
(2)
;(6分)
。(10分)
(3)
,
, 两式相减,得
,
。(12分)当
时,
。(13分)
①
时,
显然能被21整除;(14分)
②假设
时,
能被21整除,当
时,
能被21整除。结论也成立。(17分)
由①、②可知,当
是3的倍数时,
能被21整除。(18分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com