(I)若函数的图象在点P(1.)处的切线的倾斜角为.求a, 查看更多

 

题目列表(包括答案和解析)

已知函数的图象上移动时,点的图象上移动.
(I)点P的坐标为(1,-1),点Q也在y=f(x)的图象上,求t的值;
(Ⅱ)求函数y=g(x)的解析式;
(Ⅲ)若方程的解集是∅,求实数t的取值范围.

查看答案和解析>>

已知函数数学公式的图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5.
(I)求实数b、c的值;
(II)求f(x)在区间[-1,2]上的最大值;
(III)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴.若存在请证明,若不存在说明理由.

查看答案和解析>>

    已知函数的图象上移动时,点的图象上移动.

   (I)点P的坐标为(1,-1),点Q也在的图象上,求t的值;

   (II)求函数的解析式;

   (III)若方程的解集是,求实数t的取值范围.

查看答案和解析>>

设函数f(x)=x3+2bx2+cx-2的图象与x轴相交于一点P(t,0),且在点P(t,0)处的切线方程是y=5x-10.
(I)求t的值及函数f(x)的解析式;
(II)设函数g(x)=f(x)+
1
3
mx
(1)若g(x)的极值存在,求实数m的取值范围.
(2)假设g(x)有两个极值点x1,x2(且x1≥0,x2≥0),求x
 
2
1
+x
 
2
2
关于m的表达式φ(m),并判断φ(m)是否有最大值,若有最大值求出它;若没有最大值,说明理由.

查看答案和解析>>

设函数f(x)=x3+2bx2+cx-2的图象与x轴相交于一点P(t,0),且在点P(t,0)处的切线方程是y=5x-10.
(I)求t的值及函数f(x)的解析式;
(II)设函数g(x)=f(x)+
1
3
mx
(1)若g(x)的极值存在,求实数m的取值范围.
(2)假设g(x)有两个极值点x1,x2(且x1≥0,x2≥0),求x
 21
+x
 22
关于m的表达式φ(m),并判断φ(m)是否有最大值,若有最大值求出它;若没有最大值,说明理由.

查看答案和解析>>

一、选择题(本大题共8小题,每小题5,40.

题号

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

答案

D

B

A

 C

D

C

B

C

 

二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)

(9)    (10)     (11)   

(12)       (13)     (14)4,8

三、解答题(本大题共6小题,80.

(15)      (共12 分)

解:(I)

= ?

                                     2分

                                                 4分

= .                                                     5分

                               6分              

函数的最大值为.                                             7分

当且仅当Z)时,函数取得最大值为.

(II)由Z),                          9分

  (Z).                                   11分

函数的单调递增区间为[](Z).                     12分                                                                                  

(16) (共14分)

解法一:(I)证明:连结A1D,在正方体AC1中, ∵A1B1^平面A1ADD1,

\ A1D是PD在平面A1ADD内的射影.                                  2分

         在正方形A1ADD1中, A1D^ AD1, \ PDAD1.                           4分

 解(II)  取中点,连结,则//.                              

平面,∴平面.

在平面内的射影.

为CP与平面D1DCC1所成的角.                       7分

中,               

与平面D1DCC1所成的角的正弦值为.       9分                                       

(III)在正方体AC1中,.

平面内,

∥平面.

∴点到平面的距离与点C1到平面的距离相等.

平面

∴平面平面.

又平面平面

C1C1H于H,则C1H平面.

C1的长为点C1到平面的距离.                                          12分

 连结C1 ,并在上取点,使//.

中,,得.

∴点到平面的距离为.                                                14分

  解法二:如图,以D为坐标原点,建立空间直角坐标系.

        由题设知正方体棱长为4,则

.                             1分

      (I)设,.                          3分

           .                             4分

      (II)由题设可得,  , 故.

是平面

的法向量.                      7分

  .          8分                                                               

与平面D1DCC1所成角的正弦值为.                                    9分

(III),设平面D1DP的法向量

.

,即,则

.                                                              12分

C到平面D1DP的距离为.                                   14分

(17)(共13分)

解(I)设事件“某人参加A种竞猜活动只获得一个福娃奖品”为事件M,            1分

依题意,答对一题的概率为,则

P(M)=                                                   3分

=.                                                4分

(II)依题意,某人参加B种竞猜活动,结束时答题数=1,2,…,6,                5分

.                                       11分

所以,的分布列是

1

2

3

4

5

6

P

 

 

 

                 

      设

      ∴,

      ∴ E==.                       13分 

     答:某人参加A种竞猜活动只获得一个福娃奖品的概率为;某人参加B种竞猜活动,结束时答题数为E.

(18)(本小题共13分)

解;如图,建立直角坐标系,依题意:设椭圆方

   程为(a>b>0),         1分

(I)依题意:   4分                                             

椭圆M的离心率大于0.7,所以.

椭圆方程为.                                             6分

(II)因为直线l过原点与椭圆交于点,设椭圆M的左焦点为.

由对称性可知,四边形是平行四边形.

的面积等于的面积.                                   8分


同步练习册答案