上的一个最大值点为.一个最小值点为.则. 查看更多

 

题目列表(包括答案和解析)

一个均匀的正四面体的四个面上分别写有1、2、3、4四个数字,现随机投掷两次,正四面体下底面上的数字分别为x1、x2,设O为坐标原点,点P的坐标为(x1-3,x2-3),记ξ=|
OP
|2

(Ⅰ)分别求出ξ取得最大值和最小值时的概率;
(Ⅱ)求ξ的分布列及数学期望.

查看答案和解析>>

一个均匀的正四面体的四个面上分别写有1、2、3、4四个数字,现随机投掷两次,正四面体下底面上的数字分别为x1、x2,设O为坐标原点,点P的坐标为(x1-3,x2-3),记数学公式
(Ⅰ)分别求出ξ取得最大值和最小值时的概率;
(Ⅱ)求ξ的分布列及数学期望.

查看答案和解析>>

一个圆环直径为m,通过铁丝BC,CA1,CA2,CA3(A1,A2,A3是圆上三等分点且BC长度大于0)悬挂在B处,圆环呈水平状态并距天花板2m,如图所示。
(Ⅰ)设BC长为x(m),铁丝总长为y(m),试写出y关于x的函数解析式,并写出函数的定义域;
(Ⅱ)当x取多长时,铁丝总长y有最小值,并求此最小值。

查看答案和解析>>

一个均匀的正四面体的四个面上分别写有1、2、3、4四个数字,现随机投掷两次,正四面体下底面上的数字分别为x1、x2,设O为坐标原点,点P的坐标为(x1-3,x2-3),记
(Ⅰ)分别求出ξ取得最大值和最小值时的概率;
(Ⅱ)求ξ的分布列及数学期望.

查看答案和解析>>

由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量(单位:吨)与上市时间(单位:月)的关系大致如图(1)所示的折线表示,销售价格(单位:元/千克)与上市时间(单位:月)的大致关系如图(2)所示的抛物线段表示(为顶点).
(1)请分别写出,关于的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?
(2)图(1)中由四条线段所在直线围成的平面区域为,动点内(包括边界),求的最大值;
(3) 由(2),将动点所满足的条件及所求的最大值由加法运算类比到乘法运算(如类比为),试列出所满足的条件,并求出相应的最大值.

                   

查看答案和解析>>

一、选择题(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

B

A

B

C

D

A

D

C

C

D

B

二、填空题(每小题5分,共20分)

13、(1,2); 14、20; 15、21;16、

三、解答题

17、解:(Ⅰ)当时,有,又,所以 ……1分

时,

           =

         

         所以,且当时,  ……3分

,因此数列{}是以1为首项

且公差为2的等差数列,所以  ……2分

(Ⅱ)证明:(1)当时,,关系成立 ……1分

 (2)假设当时,关系成立,即,则

   ……1分  那么

   ,即当时关系也成立

……3分  根据(1)和(2)知,关系式对任意N*都成立  ……1分

18、解:(Ⅰ)如图,以C为原点,CA,CB,CC1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则

  ……1分

,则

即AM⊥BC,又因为,且

所以 AM^平面  ……3分

(Ⅱ),因为,所以,得

,可得平面的一个法向量为=  ……3分

,设平面的一个法向量为

,得,令,得平面的一个法向量为=  ……3分设平面ABM与平面AB1C1所夹锐角为

  ……2分

19、解:(Ⅰ)随机变量甲、乙两名运动员选择的泳道相隔数X的分布列为:

X

0

1

2

3

4

5

6

     ……6分

泳道相隔数X的期望为:

E(X)= ……2分

(Ⅱ)  ……4分

20、解:(Ⅰ)由  ……2分

可得直线的方程为,于是

,所以椭圆的方程为  ……2分

(Ⅱ)设,由方程组

      所以有,且,即 ……2分

    

            ……2分

     因为,所以,又,所以是线段的中点,

     点的坐标为,即的坐标是,因此

     直线的方程为,得点的坐标为(0,),

     所以   ……2分

    因此

    所以当,即时,取得最大值,最大值为 ……2分

21、解:(Ⅰ)

                     ……2分

,则为R上的单调递增函数;

的解为的解为

此时在区间单调递增,在区间单调递减;

的解为的解为

此时在区间单调递增,在区间单调递减……3分

(Ⅱ)当时,

因为,所以点(0,)不在曲线上,设过点的直线与曲线相切于点,则切线方程为,所以有

,得……2分 令

,得,可得在区间单调递增,在区间单调递减,所以时取极大值

时取极小值,在时取极大值,又

所以的最大值 ……3分 

如图,过点(0,)有且只有一条直线与曲线

相切等价于直线与曲线

有且只有一个交点,又当时,,所以  ……2分

22、(Ⅰ)证明:因为AB为⊙O直径,

所以 ∠ACB=90°,即 AC⊥BC,

因为D是弧的中点,由垂径定理

得OD⊥BC,因此OD∥AC  ……3分

又因为点O为AB的中点,所以点E为

BC的中点,所以OE=AC  ……2分

(Ⅱ)证明:连结CD,因为PC是⊙O的切线,所以∠PCD=∠CAP,又∠P是公共角,所以 △PCD∽△PAC.得,得 ……3分

因为D是弧的中点,所以,因此   ……2分

23、解:(Ⅰ)曲线上的动点的坐标为(),坐标原点(0,0),

     设P的坐标为(),则由中点坐标公式得,所以点P 的坐标为()……3分

      因此点的轨迹的参数方程为为参数,且),

消去参数得点轨迹的直角坐标方程为 ……2分

(Ⅱ)由直角坐标与极坐标关系得直线的直角坐标方程为

  ……2分 又由(Ⅰ)知点的轨迹为圆心在原点半径为2的圆,

因为原点(0,0)到直线的距离为

所以点到直线距离的最大值  ……3分

24、解:(Ⅰ)由题意得,即  得 ……2分

     因为 

所以的取值范围是[0,6]   ……3分

(Ⅱ)

因为对于,由绝对值的三角不等式得

   ……3分

于是有,得,即的取值范围是  ……2分

 

 

 

 

 

 

 


同步练习册答案