故.. 查看更多

 

题目列表(包括答案和解析)

(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.
(1)求B、C两点的距离;
(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?
(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,
3
≈1.732
,60千米/小时≈16.7米/秒)

查看答案和解析>>

(2013•锡山区一模)随着企业效益的提高,李师傅所在的企业每年都会提高职工当年的月工资.李师傅2010年的月工资为4000元,2012年时他的月工资增加到4840元,他2013年的月工资按2010到2012年的月工资的平均增长率继续增长.
(1)李师傅2013年的月工资为多少?
(2)李师傅想用自己2013年月工资的一半购买一些书籍全部捐献给西部山区的学校,他到书店看了甲、乙两种工具书的单价,他计划的金额刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价互换了,故实际付款比预计的少了242元,于是他发现这242元恰好又可以购买了甲、乙两种工具书各二本,最后他把购买的这两种工具书全部捐献给西部山区的学校.请问李师傅总共捐献了多少本工具书?

查看答案和解析>>

(1)观察发现:
如图1,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P
再如图2,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为
 

精英家教网
(2)实践运用
如图3,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值.精英家教网
(3)拓展延伸
如图4,在四边形ABCD的对角线AC上找一点F,使∠AFB=∠AFD.保留作图痕迹,不必写出作法.

查看答案和解析>>

(2004•安徽)“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1、s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )
A.
B.
C.
D.

查看答案和解析>>

(2004•安徽)“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1、s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )
A.
B.
C.
D.

查看答案和解析>>


同步练习册答案