(Ⅱ)依题意.当甲连胜局或乙连胜局时.第二局比赛结束时比赛结束. 查看更多

 

题目列表(包括答案和解析)

一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每小时通过管道向所管辖区域供水千吨.

(1)多少小时后,蓄水池存水量最少?

(2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?

【解析】第一问中(1)设小时后,蓄水池有水千吨.依题意,,即(小时)时,蓄水池的水量最少,只有1千吨

第二问依题意,   解得:

解:(1)设小时后,蓄水池有水千吨.………………………………………1分

依题意,…………………………………………4分

,即(小时)时,蓄水池的水量最少,只有1千吨. ………2分

(2)依题意,   ………………………………………………3分

解得:.  …………………………………………………………………3分

所以,当天有8小时会出现供水紧张的情况

 

查看答案和解析>>

某学校举行知识竞赛,第一轮选拔共设有A,B,C,D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A,B,C,D分别加1分,2分,3分,6分,答错任意题减2分;
②每答一题,计分器显示累计分数,当累积分数小于8分时,答题结束,淘汰出局;当累积分数大于或等于14分时,答题结束,进入下一轮;答完四题累计分数不足14分时,答题结束淘汰出局;
③每位参加者按A,B,C,D顺序作答,直至答题结束.
假设甲同学对问题A,B,C,D回答正确的概率依次为
3
4
1
2
1
3
1
4
,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题的个数,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

甲、乙两公司同时开发同一种新产品,经测算,对于函数f(x)、g(x)以及任意的x≥0,当甲公司投入x万元作宣传时,若乙公司投入的宣传费小于f(x)万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费小于g(x)万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.
(Ⅰ)试解释f(0)=10,g(0)=20的实际意义;
(Ⅱ)设f(x)=
1
4
x+10,g(x)=
x
+20
,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司各应投入多少宣传费?

查看答案和解析>>

(2012•自贡一模)甲、乙两人喊拳,每人可以用手出0,5,10三种数字,每人则可喊0,5,10,15,20五种数字,当两人所出数字之和等于某人所喊时为胜,若甲喊10,乙喊15时,则(  )

查看答案和解析>>

甲、乙两公司生产同一种新产品,经测算,对于函数f(x)、g(x) 及任意的x≥0,当甲公司投入x万元作宣传时,若乙公司投入的宣传费小于f(x) 万元,则乙公司有失败的风险,否则无失败的风险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费小于g(x) 万元,则甲公司有失败的风险,否则无失败的风险.
(1)请解释f(0)、g(0)的实际意义;
(2)当f(x)=x+4,g(x)=
x
+8
时,甲、乙两公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能的少投入宣传费用,问此时甲乙两公司应各投入多少宣传费用?

查看答案和解析>>


同步练习册答案