又∵.∴平面. ----8分 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥中,⊥底面,底面为正方形,分别是的中点.

(I)求证:平面

(II)求证:

(III)设PD=AD=a, 求三棱锥B-EFC的体积.

【解析】第一问利用线面平行的判定定理,,得到

第二问中,利用,所以

又因为,从而得

第三问中,借助于等体积法来求解三棱锥B-EFC的体积.

(Ⅰ)证明: 分别是的中点,    

.       …4分

(Ⅱ)证明:四边形为正方形,

.    ………8分

(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,

 

查看答案和解析>>

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.

(I)判别MN与平面AEF的位置关系,并给出证明;

(II)求多面体E-AFMN的体积.

                 

【解析】第一问因翻折后B、C、D重合(如下图),所以MN应是的一条中位线,则利用线线平行得到线面平行。

第二问因为平面BEF,……………8分

,又 ∴

(1)因翻折后B、C、D重合(如图),

所以MN应是的一条中位线,………………3分

.………6分

(2)因为平面BEF,……………8分

,………………………………………10分

 ∴

 

查看答案和解析>>

如图,在三棱锥P-ABC中,直线PA⊥平面ABC,且∠ABC=90°,又点Q,M,N分别是线段PB,AB,BC的中点,且点K是线段MN上的动点.
(Ⅰ)证明:直线QK平面PAC;
(Ⅱ)若PA=AB=BC=8,且二面角Q-AK-M的平面角的余弦值为
3
9
,试求MK的长度.

查看答案和解析>>

(文)(本小题8分)

如图,在四棱锥中,平面

(1)求证:

(2)求点到平面的距离

   证明:(1)平面

  

   平面  (4分)

   (2)设点到平面的距离为

  

   求得即点到平面的距离为               (8分)

(其它方法可参照上述评分标准给分)

 

 

查看答案和解析>>

(文)(本小题8分)
如图,在四棱锥中,平面
(1)求证:
(2)求点到平面的距离
证明:(1)平面

平面 (4分)
(2)设点到平面的距离为

求得即点到平面的距离为              (8分)
(其它方法可参照上述评分标准给分)

查看答案和解析>>


同步练习册答案