平面EFG//平面PAB, --4分 查看更多

 

题目列表(包括答案和解析)

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>

三棱柱中,侧棱与底面垂直,分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

【解析】第一问利连结,∵M,N是AB,的中点∴MN//

又∵平面,∴MN//平面      ----------4分

⑵中年∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,∴四边形是正方形.∴.∴.连结

,又N中的中点,∴

相交于点C,∴MN平面.      --------------9分

⑶中由⑵知MN是三棱锥M-的高.在直角中,

∴MN=.又.得到结论。

⑴连结,∵M,N是AB,的中点∴MN//

又∵平面,∴MN//平面   --------4分

⑵∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,

∴四边形是正方形.∴

.连结

,又N中的中点,∴

相交于点C,∴MN平面.      --------------9分

⑶由⑵知MN是三棱锥M-的高.在直角中,

∴MN=.又

 

查看答案和解析>>

如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点,且.

(Ⅰ)求证:CN∥平面AMB1

(Ⅱ)求证: B1M⊥平面AMG.

【解析】本试题主要是考查了立体几何汇总线面的位置关系的运用。第一问中,要证CN∥平面AMB1;,只需要确定一条直线CN∥MP,既可以得到证明

第二问中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到线线垂直,B1M⊥AG,结合线面垂直的判定定理和性质定理,可以得证。

解:(Ⅰ)设AB1 的中点为P,连结NP、MP ………………1分

∵CM   ,NP   ,∴CM       NP, …………2分

∴CNPM是平行四边形,∴CN∥MP  …………………………3分

∵CN  平面AMB1,MP奂  平面AMB1,∴CN∥平面AMB1…4分

(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

    ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

设:AC=2a,则

…………………………8分

同理,…………………………………9分

∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

………………………………10分

 

查看答案和解析>>

如图,在四棱锥P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别是PC,PD,BC的中点.
(1)求证:平面PAB∥平面EFG;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明.

查看答案和解析>>

精英家教网如图,PA⊥平面ABCD,ABCD为正方形,,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:面EFG⊥面PAB;
(2)求异面直线EG与BD所成的角的余弦值;
(3)求点A到面EFG的距离.

查看答案和解析>>


同步练习册答案