又.故. 查看更多

 

题目列表(包括答案和解析)

如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB

(Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本试题主要考查了立体几何中的运用。

(1)证明:因为SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE为等腰三角形.

取ED中点F,连接AF,则AF⊥DE,AF2= AD2-DF2 =

连接FG,则FG∥EC,FG⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

连接AG,AG= 2 ,FG2= DG2-DF2 =

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小为120°

 

查看答案和解析>>

中,已知 ,面积

(1)求的三边的长;

(2)设(含边界)内的一点,到三边的距离分别是

①写出所满足的等量关系;

②利用线性规划相关知识求出的取值范围.

【解析】第一问中利用设中角所对边分别为

    

又由 

又由 

       又

的三边长

第二问中,①

依题意有

作图,然后结合区域得到最值。

 

查看答案和解析>>

如图,在南北方向直线延伸湖岸上有一港口A,一汽艇以60 km/h的速度从A出发,30分钟后因故障而停在湖里.已知汽艇出发后按直线前进,以后又改成正东方向航行,但不知最初的方向和何时改变方向.现要去营救,请用图表示营救的区域.

查看答案和解析>>

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>

数列首项,前项和满足等式(常数……)

(1)求证:为等比数列;

(2)设数列的公比为,作数列使 (……),求数列的通项公式.

(3)设,求数列的前项和.

【解析】第一问利用由

两式相减得

时,

从而  即,而

从而  故

第二问中,     又为等比数列,通项公式为

第三问中,

两边同乘以

利用错位相减法得到和。

(1)由

两式相减得

时,

从而   ………………3分

  即,而

从而  故

对任意为常数,即为等比数列………………5分

(2)    ……………………7分

为等比数列,通项公式为………………9分

(3)

两边同乘以

………………11分

两式相减得

 

查看答案和解析>>


同步练习册答案