又∵ ∴平面. -------5分 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

如图,在矩形ABCD中,AB=2,BC=为等边三角形,又平面PAD⊥平面ABCD.w.w.w.k.

s.5(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求的取值范围;

(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.

查看答案和解析>>

如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB

(Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本试题主要考查了立体几何中的运用。

(1)证明:因为SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE为等腰三角形.

取ED中点F,连接AF,则AF⊥DE,AF2= AD2-DF2 =

连接FG,则FG∥EC,FG⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

连接AG,AG= 2 ,FG2= DG2-DF2 =

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小为120°

 

查看答案和解析>>

给出下面四个命题:
①m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
②m,n是平面α内的两条直线,直线l在平面α外,则l⊥α是l⊥m且l⊥n的充分不必要条件;
③函数a=b=0是f(x)=x2+b|x-a|为偶函数的必要非充分条件;
b=
ac
是a,b,c
三个数成等比数列的既不充分又非必要条件;
其中真命题的序号是
 
.(写出所有真命题的序号)

查看答案和解析>>

给出下面四个命题:
①m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
②m,n是平面α内的两条直线,直线l在平面α外,则l⊥α是l⊥m且l⊥n的充分不必要条件;
③函数a=b=0是f(x)=x2+b|x-a|为偶函数的必要非充分条件;
三个数成等比数列的既不充分又非必要条件;
其中真命题的序号是    .(写出所有真命题的序号)

查看答案和解析>>

给出下面四个命题:
①m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
②m,n是平面α内的两条直线,直线l在平面α外,则l⊥α是l⊥m且l⊥n的充分不必要条件;
③函数a=b=0是f(x)=x2+b|x-a|为偶函数的必要非充分条件;
数学公式三个数成等比数列的既不充分又非必要条件;
其中真命题的序号是________.(写出所有真命题的序号)

查看答案和解析>>


同步练习册答案